46.全排列
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
- 输入: [1,2,3]
- 输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
思路
此时我们已经学习了77.组合问题、 131.分割回文串和78.子集问题,接下来看一看排列问题。
相信这个排列问题就算是让你用for循环暴力把结果搜索出来,这个暴力也不是很好写。
所以正如我们在关于回溯算法,你该了解这些!所讲的为什么回溯法是暴力搜索,效率这么低,还要用它?
因为一些问题能暴力搜出来就已经很不错了!
我以[1,2,3]为例,抽象成树形结构如下:
回溯三部曲
- 递归函数参数
首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
- 递归终止条件
可以看出叶子节点,就是收割结果的地方。
那么什么时候,算是到达叶子节点呢?
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。
代码如下:
// 此时说明找到了一组
if (path.size() == nums.size()) {
result.push_back(path);
return;
}
- 单层搜索的逻辑
这里和77.组合问题、131.切割问题和78.子集问题最大的不同就是for循环里不用startIndex了。
因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。
而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次。
代码如下:
for (int i = 0; i < nums.size(); i++) {
if (used[i] == true) continue; // path里已经收录的元素,直接跳过
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
整体C++代码如下:
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used) {
// 此时说明找到了一组
if (path.size() == nums.size()) {
result.push_back(path);
return;
}
for (int i = 0; i < nums.size(); i++) {
if (used[i] == true) continue; // path里已经收录的元素,直接跳过
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
}
vector<vector<int>> permute(vector<int>& nums) {
result.clear();
path.clear();
vector<bool> used(nums.size(), false);
backtracking(nums, used);
return result;
}
};
- 时间复杂度: O(n!)
- 空间复杂度: O(n)
总结
大家此时可以感受出排列问题的不同:
- 每层都是从0开始搜索而不是startIndex
- 需要used数组记录path里都放了哪些元素了
排列问题是回溯算法解决的经典题目,大家可以好好体会体会。
其他语言版本
Java
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used;
public List<List<Integer>> permute(int[] nums) {
if (nums.length == 0){
return result;
}
used = new boolean[nums.length];
permuteHelper(nums);
return result;
}
private void permuteHelper(int[] nums){
if (path.size() == nums.length){
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++){
if (used[i]){
continue;
}
used[i] = true;
path.add(nums[i]);
permuteHelper(nums);
path.removeLast();
used[i] = false;
}
}
}
// 解法2:通过判断path中是否存在数字,排除已经选择的数字
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> permute(int[] nums) {
if (nums.length == 0) return result;
backtrack(nums, path);
return result;
}
public void backtrack(int[] nums, LinkedList<Integer> path) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
}
for (int i =0; i < nums.length; i++) {
// 如果path中已有,则跳过
if (path.contains(nums[i])) {
continue;
}
path.add(nums[i]);
backtrack(nums, path);
path.removeLast();
}
}
}
Python
回溯 使用used
class Solution:
def permute(self, nums):
result = []
self.backtracking(nums, [], [False] * len(nums), result)
return result
def backtracking(self, nums, path, used, result):
if len(path) == len(nums):
result.append(path[:])
return
for i in range(len(nums)):
if used[i]:
continue
used[i] = True
path.append(nums[i])
self.backtracking(nums, path, used, result)
path.pop()
used[i] = False
Go
var (
res [][]int
path []int
st []bool // state的缩写
)
func permute(nums []int) [][]int {
res, path = make([][]int, 0), make([]int, 0, len(nums))
st = make([]bool, len(nums))
dfs(nums, 0)
return res
}
func dfs(nums []int, cur int) {
if cur == len(nums) {
tmp := make([]int, len(path))
copy(tmp, path)
res = append(res, tmp)
}
for i := 0; i < len(nums); i++ {
if !st[i] {
path = append(path, nums[i])
st[i] = true
dfs(nums, cur + 1)
st[i] = false
path = path[:len(path)-1]
}
}
}
Javascript
/**
* @param {number[]} nums
* @return {number[][]}
*/
var permute = function(nums) {
const res = [], path = [];
backtracking(nums, nums.length, []);
return res;
function backtracking(n, k, used) {
if(path.length === k) {
res.push(Array.from(path));
return;
}
for (let i = 0; i < k; i++ ) {
if(used[i]) continue;
path.push(n[i]);
used[i] = true; // 同支
backtracking(n, k, used);
path.pop();
used[i] = false;
}
}
};
TypeScript
function permute(nums: number[]): number[][] {
const resArr: number[][] = [];
const helperSet: Set<number> = new Set();
backTracking(nums, []);
return resArr;
function backTracking(nums: number[], route: number[]): void {
if (route.length === nums.length) {
resArr.push([...route]);
return;
}
let tempVal: number;
for (let i = 0, length = nums.length; i < length; i++) {
tempVal = nums[i];
if (!helperSet.has(tempVal)) {
route.push(tempVal);
helperSet.add(tempVal);
backTracking(nums, route);
route.pop();
helperSet.delete(tempVal);
}
}
}
};
Rust
impl Solution {
fn backtracking(result: &mut Vec<Vec<i32>>, path: &mut Vec<i32>, nums: &Vec<i32>, used: &mut Vec<bool>) {
let len = nums.len();
if path.len() == len {
result.push(path.clone());
return;
}
for i in 0..len {
if used[i] == true { continue; }
used[i] = true;
path.push(nums[i]);
Self::backtracking(result, path, nums, used);
path.pop();
used[i] = false;
}
}
pub fn permute(nums: Vec<i32>) -> Vec<Vec<i32>> {
let mut result: Vec<Vec<i32>> = Vec::new();
let mut path: Vec<i32> = Vec::new();
let mut used = vec![false; nums.len()];
Self::backtracking(&mut result, &mut path, &nums, &mut used);
result
}
}
C
int* path;
int pathTop;
int** ans;
int ansTop;
//将used中元素都设置为0
void initialize(int* used, int usedLength) {
int i;
for(i = 0; i < usedLength; i++) {
used[i] = 0;
}
}
//将path中元素拷贝到ans中
void copy() {
int* tempPath = (int*)malloc(sizeof(int) * pathTop);
int i;
for(i = 0; i < pathTop; i++) {
tempPath[i] = path[i];
}
ans[ansTop++] = tempPath;
}
void backTracking(int* nums, int numsSize, int* used) {
//若path中元素个数等于nums元素个数,将nums放入ans中
if(pathTop == numsSize) {
copy();
return;
}
int i;
for(i = 0; i < numsSize; i++) {
//若当前下标中元素已使用过,则跳过当前元素
if(used[i])
continue;
used[i] = 1;
path[pathTop++] = nums[i];
backTracking(nums, numsSize, used);
//回溯
pathTop--;
used[i] = 0;
}
}
int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes){
//初始化辅助变量
path = (int*)malloc(sizeof(int) * numsSize);
ans = (int**)malloc(sizeof(int*) * 1000);
int* used = (int*)malloc(sizeof(int) * numsSize);
//将used数组中元素都置0
initialize(used, numsSize);
ansTop = pathTop = 0;
backTracking(nums, numsSize, used);
//设置path和ans数组的长度
*returnSize = ansTop;
*returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
int i;
for(i = 0; i < ansTop; i++) {
(*returnColumnSizes)[i] = numsSize;
}
return ans;
}
Swift
func permute(_ nums: [Int]) -> [[Int]] {
var result = [[Int]]()
var path = [Int]()
var used = [Bool](repeating: false, count: nums.count) // 记录path中已包含的元素
func backtracking() {
// 结束条件,收集结果
if path.count == nums.count {
result.append(path)
return
}
for i in 0 ..< nums.count {
if used[i] { continue } // 排除已包含的元素
used[i] = true
path.append(nums[i])
backtracking()
// 回溯
path.removeLast()
used[i] = false
}
}
backtracking()
return result
}
Scala
object Solution {
import scala.collection.mutable
def permute(nums: Array[Int]): List[List[Int]] = {
var result = mutable.ListBuffer[List[Int]]()
var path = mutable.ListBuffer[Int]()
def backtracking(used: Array[Boolean]): Unit = {
if (path.size == nums.size) {
// 如果path的长度和nums相等,那么可以添加到结果集
result.append(path.toList)
return
}
// 添加循环守卫,只有当当前数字没有用过的情况下才进入回溯
for (i <- nums.indices if used(i) == false) {
used(i) = true
path.append(nums(i))
backtracking(used) // 回溯
path.remove(path.size - 1)
used(i) = false
}
}
backtracking(new Array[Boolean](nums.size)) // 调用方法
result.toList // 最终返回结果集的List形式
}
}
C#
public class Solution
{
public IList<IList<int>> res = new List<IList<int>>();
public IList<int> path = new List<int>();
public IList<IList<int>> Permute(int[] nums)
{
var used = new bool[nums.Length];
BackTracking(nums, used);
return res;
}
public void BackTracking(int[] nums, bool[] used)
{
if (path.Count == nums.Length)
{
res.Add(new List<int>(path));
return;
}
for (int i = 0; i < nums.Length; i++)
{
if (used[i]) continue;
used[i] = true;
path.Add(nums[i]);
BackTracking(nums, used);
used[i] = false;
path.RemoveAt(path.Count - 1);
}
}
}