一、绑定端口分析
1)、服务器绑定端口是在 bind 方法里完成的
2)、在bind 方法代码中,创建了一个端口对象,并做了一些判断,核心代码为:doBind 方法
public ChannelFuture bind(SocketAddress localAddress) {
validate();
if (localAddress == null) {
throw new NullPointerException("localAddress");
}
return doBind(localAddress);
}
3)、doBind 核心的两个方法:initAndRegister 和 doBind0
private ChannelFuture doBind(final SocketAddress localAddress) {
final ChannelFuture regFuture = initAndRegister();
final Channel channel = regFuture.channel();
if (regFuture.cause() != null) {
return regFuture;
}
if (regFuture.isDone()) {
// At this point we know that the registration was complete and successful.
ChannelPromise promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);
return promise;
} else {
// Registration future is almost always fulfilled already, but just in case it's not.
final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
regFuture.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
Throwable cause = future.cause();
if (cause != null) {
// Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
// IllegalStateException once we try to access the EventLoop of the Channel.
promise.setFailure(cause);
} else {
// Registration was successful, so set the correct executor to use.
// See https://github.com/netty/netty/issues/2586
promise.registered();
doBind0(regFuture, channel, localAddress, promise);
}
}
});
return promise;
}
}
4)、initAndRegister 分析
final ChannelFuture initAndRegister() {
Channel channel = null;
try {
channel = channelFactory.newChannel();
init(channel);
} catch (Throwable t) {
if (channel != null) {
// channel can be null if newChannel crashed (eg SocketException("too many open files"))
channel.unsafe().closeForcibly();
// as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);
}
// as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
}
ChannelFuture regFuture = config().group().register(channel);
if (regFuture.cause() != null) {
if (channel.isRegistered()) {
channel.close();
} else {
channel.unsafe().closeForcibly();
}
}
// If we are here and the promise is not failed, it's one of the following cases:
// 1) If we attempted registration from the event loop, the registration has been completed at this point.
// i.e. It's safe to attempt bind() or connect() now because the channel has been registered.
// 2) If we attempted registration from the other thread, the registration request has been successfully
// added to the event loop's task queue for later execution.
// i.e. It's safe to attempt bind() or connect() now:
// because bind() or connect() will be executed *after* the scheduled registration task is executed
// because register(), bind(), and connect() are all bound to the same thread.
return regFuture;
}
channelFactory.newChannel()方法的作用是通过 ServerBootstrap 的通道工厂反射创建一个 NioServerSocketChannel。
1、 通过NIO的SelectorProvider的openServerSocketChannel方法得到JDK的channel目的是让Netty保证JDK的channel;
2、 创建了一个唯一的ChannelId,创建了一个NioMessageUnsafe,用于操作消息,创建了一个DefaultChannelPipeline管道,是个双向链表结构,用于过滤所有的进出消息;
3、 创建了一个NioServerSocketChannelConfig对象,用于对外展示一些配置;
init 用于初始化 NioServerSocketChannel
1、 init方法,是AbstractBootstrap的一个抽象方法,由ServerBootstrap实现,setChannelOptions(channel,options,logger);;
2、 设置NioServerSocketChannel的TCP属性;
3、 由于LinkedHashMap是非线程安全的,会使用同步进行处理;
4、 对NioServerSocketChannel的ChannelPipeline添加ChannelInitializer处理器;
5、 init方法的核心作用和ChannelPipeline相关;
6、 从NioServerSocketChannel的初始化过程中,可以知道pipeline是一个双向链表,并且,它本身就初始化了head和tail,addLast方法,也就是将整个handler插入到tail的前面,因为tail永远会在后面,需要做一些系统的固定工作;
基本说明
1、 initAndRegister()初始化NioServerSocketChannel通道并注册各个handler,返回一个future;
2、 通过ServerBootstrap的通道工厂反射创建一个NioServerSocketChannel;
3、 init用于初始化NioServerSocketChannel;
4、 config().group().register(channel)通过ServerBootstrap的bossGroup注册NioServerSocketChanel;
5、 返回异步执行的占位符,即regFuture;
5)、init 方法会调用 addLast
@Override
public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {
final AbstractChannelHandlerContext newCtx;
synchronized (this) {
checkMultiplicity(handler);
newCtx = newContext(group, filterName(name, handler), handler);
addLast0(newCtx);
// If the registered is false it means that the channel was not registered on an eventloop yet.
// In this case we add the context to the pipeline and add a task that will call
// ChannelHandler.handlerAdded(...) once the channel is registered.
if (!registered) {
newCtx.setAddPending();
callHandlerCallbackLater(newCtx, true);
return this;
}
EventExecutor executor = newCtx.executor();
if (!executor.inEventLoop()) {
newCtx.setAddPending();
executor.execute(new Runnable() {
@Override
public void run() {
callHandlerAdded0(newCtx);
}
});
return this;
}
}
callHandlerAdded0(newCtx);
return this;
}
1、 addLast方法在DefaultChannelPipeline;
2、 addLast方法是pipeline方法的核心;
3、 会检查handler是否符合标准;
4、 创建一个AbstractChannelHandlerContext对象,ChannelHandlerContext对象是ChannelHandler和ChannelPipeline之间的关联,每当有ChannelHandler添加到pipeline中时,都会创建ContextContext的主要功能是管理它所关联的Handler和同一个pipeline中的其它Handler之间的交互;
5、 将Context添加到链表中,也就是追加到tail节点的前面;
6、 同步、异步或者晚点异步的调用callHandlerAdded0方法;
6)、doBind0 方法
private static void doBind0(
final ChannelFuture regFuture, final Channel channel,
final SocketAddress localAddress, final ChannelPromise promise) {
// This method is invoked before channelRegistered() is triggered. Give user handlers a chance to set up
// the pipeline in its channelRegistered() implementation.
channel.eventLoop().execute(new Runnable() {
@Override
public void run() {
if (regFuture.isSuccess()) {
channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
} else {
promise.setFailure(regFuture.cause());
}
}
});
}
1、 该方法的参数为initAndRegister的future,NioServerSocketChannel,端口地址,NioServerSocketChannel的promise;
2、 一直Debug到NioServerSocketChannel的doBind方法,说明Netty底层使用的是Nio;
@Override
protected void doBind(SocketAddress localAddress) throws Exception {
if (PlatformDependent.javaVersion() >= 7) {
javaChannel().bind(localAddress, config.getBacklog());
} else {
javaChannel().socket().bind(localAddress, config.getBacklog());
}
}
1、 最后一步:safeSetSuccess(promise),告诉promise任务成功了,就可以监听执行器的方法了到此整个启动过程就结束了;
2、 继续alt+v服务器就会进入到NioEventLoop的一个循环代码,进行监听;
@Override
protected void run() {
for (;;) {
try {
switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
case SelectStrategy.CONTINUE:
continue;
case SelectStrategy.SELECT:
select(wakenUp.getAndSet(false));
// 'wakenUp.compareAndSet(false, true)' is always evaluated
// before calling 'selector.wakeup()' to reduce the wake-up
// overhead. (Selector.wakeup() is an expensive operation.)
//
// However, there is a race condition in this approach.
// The race condition is triggered when 'wakenUp' is set to
// true too early.
//
// 'wakenUp' is set to true too early if:
// 1) Selector is waken up between 'wakenUp.set(false)' and
// 'selector.select(...)'. (BAD)
// 2) Selector is waken up between 'selector.select(...)' and
// 'if (wakenUp.get()) { ... }'. (OK)
//
// In the first case, 'wakenUp' is set to true and the
// following 'selector.select(...)' will wake up immediately.
// Until 'wakenUp' is set to false again in the next round,
// 'wakenUp.compareAndSet(false, true)' will fail, and therefore
// any attempt to wake up the Selector will fail, too, causing
// the following 'selector.select(...)' call to block
// unnecessarily.
//
// To fix this problem, we wake up the selector again if wakenUp
// is true immediately after selector.select(...).
// It is inefficient in that it wakes up the selector for both
// the first case (BAD - wake-up required) and the second case
// (OK - no wake-up required).
if (wakenUp.get()) {
selector.wakeup();
}
// fall through
default:
}
cancelledKeys = 0;
needsToSelectAgain = false;
final int ioRatio = this.ioRatio;
if (ioRatio == 100) {
try {
processSelectedKeys();
} finally {
// Ensure we always run tasks.
runAllTasks();
}
} else {
final long ioStartTime = System.nanoTime();
try {
processSelectedKeys();
} finally {
// Ensure we always run tasks.
final long ioTime = System.nanoTime() - ioStartTime;
runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
}
}
} catch (Throwable t) {
handleLoopException(t);
}
// Always handle shutdown even if the loop processing threw an exception.
try {
if (isShuttingDown()) {
closeAll();
if (confirmShutdown()) {
return;
}
}
} catch (Throwable t) {
handleLoopException(t);
}
}
}
版权声明:本文不是「本站」原创文章,版权归原作者所有 | 原文地址: