05、并发编程基础(本地线程、多线程问题)

一、本地线程

1.1 ThreadLocal

Java中的ThreadLocal类允许我们创建只能被同一个线程读写的变量。因此,如果一段代码含有一个ThreadLocal变量的引用,即使两个线程同时执行这段代码,它们也无法访问到对方的ThreadLocal变量。

如何创建ThreadLocal变量

以下代码展示了如何创建一个ThreadLocal变量:

private ThreadLocal myThreadLocal = new ThreadLocal();

我们可以看到,通过这段代码实例化了一个ThreadLocal对象。我们只需要实例化对象一次,并且也不需要知道它是被哪个线程实例化。虽然所有的线程都能访问到这个ThreadLocal实例,但是每个线程却只能访问到自己通过调用ThreadLocal的set()方法设置的值。即使是两个不同的线程在同一个ThreadLocal对象上设置了不同的值,他们仍然无法访问到对方的值。

如何访问ThreadLocal变量

一旦创建了一个ThreadLocal变量,你可以通过如下代码设置某个需要保存的值:

myThreadLocal.set("A thread local value”);

可以通过下面方法读取保存在ThreadLocal变量中的值:

String threadLocalValue = (String) myThreadLocal.get();

ThreadLocal例子:

public class ThreadLocalTest {
   
     

    public static class MyRunnable implements Runnable {
   
     

        private ThreadLocal threadLocal = new ThreadLocal();

        public void run() {
   
     
            threadLocal.set((int) (Math.random() * 100D));
            try {
   
     
                Thread.sleep(2000);
            } catch (InterruptedException e) {
   
     

            }
            System.out.println(threadLocal.get());
        }
    }

    public static void main(String[] args) {
   
     
        MyRunnable sharedInstance = new MyRunnable();
        Thread thread1 = new Thread(sharedInstance);
        Thread thread2 = new Thread(sharedInstance);
        thread1.start();
        thread2.start();
    }

}

*

上面的例子创建了一个MyRunnable实例,并将该实例作为参数传递给两个线程。两个线程分别执行run()方法,并且都在ThreadLocal实例上保存了不同的值。如果它们访问的不是ThreadLocal对象并且调用的set()方法被同步了,则第二个线程会覆盖掉第一个线程设置的值。但是,由于它们访问的是一个ThreadLocal对象,因此这两个线程都无法看到对方保存的值。也就是说,它们存取的是两个不同的值。

关于InheritableThreadLocal

InheritableThreadLocal类是ThreadLocal类的子类。ThreadLocal中每个线程拥有它自己的值,与ThreadLocal不同的是,InheritableThreadLocal允许一个线程以及该线程创建的所有子线程都可以访问它保存的值。

1.2 ThreadLocal原理及内存泄漏问题

每个thread中都存在一个map, map的类型是ThreadLocal.ThreadLocalMap. Map中的key为一个threadlocal实例. 这个Map的确使用了弱引用,不过弱引用只是针对key. 每个key都弱引用指向threadlocal. 当把threadlocal实例置为null以后,没有任何强引用指向threadlocal实例,所以threadlocal将会被gc回收. 但是,我们的value却不能回收,因为存在一条从current thread连接过来的强引用. 只有当前thread结束以后, current thread就不会存在栈中,强引用断开, Current Thread, Map, value将全部被GC回收。所以得出一个结论就是只要这个线程对象被gc回收,就不会出现内存泄露,但在threadLocal设为null和线程结束这段时间不会被回收的,就发生了我们认为的内存泄露。其实这是一个对概念理解的不一致,也没什么好争论的。最要命的是线程对象不被回收的情况,这就发生了真正意义上的内存泄露。比如使用线程池的时候,线程结束是不会销毁的,会再次使用的就可能出现内存泄露 。(在web应用中,每次http请求都是一个线程,tomcat容器配置使用线程池时会出现内存泄漏问题)
*

ThreadLocal只是操作Thread中的ThreadLocalMap,每个Thread都有一个map,ThreadLocalMap是线程内部属性,ThreadLocalMap生命周期是和Thread一样的,不依赖于ThreadMap。ThreadLocal通过Entry保存在map中,key为Thread的弱引用(GC时会自动回收),value为存入的变量副本,一个线程不管有多少个ThreadLocal,都是通过一个ThreadLocalMap来存放局部变量的,可以再源码中看到,set值时先获取map对象,如果不存在则创建,threadLocalMap初始大小为16,当容量超过2/3时会自动扩容。

1.3 总结

  • 使用ThreadLocal,建议用static修饰 static ThreadLocal headerLocal = new ThreadLocal();
  • 使用完ThreadLocal后,执行remove操作,避免出现内存溢出情况。

二、多线程问题

2.1 死锁

死锁的产生

死锁是两个或更多线程阻塞着等待其它处于死锁状态的线程所持有的锁。死锁通常发生在多个线程同时但以不同的顺序请求同一组锁的时候。

例如,如果线程1锁住了A,然后尝试对B进行加锁,同时线程2已经锁住了B,接着尝试对A进行加锁,这时死锁就发生了。线程1永远得不到B,线程2也永远得不到A,并且它们永远也不会知道发生了这样的事情。为了得到彼此的对象(A和B),它们将永远阻塞下去。这种情况就是一个死锁。

该情况如下:

Thread 1 locks A, waits for B
Thread 2 locks B, waits for A

更复杂的死锁
死锁可能不止包含2个线程,这让检测死锁变得更加困难。下面是4个线程发生死锁的例子:

Thread 1 locks A, waits for B
Thread 2 locks B, waits for C
Thread 3 locks C, waits for D
Thread 4 locks D, waits for A

线程1等待线程2,线程2等待线程3,线程3等待线程4,线程4等待线程1。

数据库的死锁
更加复杂的死锁场景发生在数据库事务中。一个数据库事务可能由多条SQL更新请求组成。当在一个事务中更新一条记录,这条记录就会被锁住避免其他事务的更新请求,直到该事务结束。同一个事务中每一个更新请求都可能会锁住一些记录。

当多个事务同时需要对一些相同的记录做更新操作时,就很有可能发生死锁,例如:

Transaction 1, request 1, locks record 1 for update
Transaction 2, request 1, locks record 2 for update
Transaction 1, request 2, tries to lock record 2 for update.
Transaction 2, request 2, tries to lock record 1 for update.

因为锁发生在不同的请求中,并且对于一个事务来说不可能提前知道所有它需要的锁,因此很难检测和避免数据库事务中的死锁。

产生死锁的四个必要条件

java 死锁产生的四个必要条件:

  • 1、互斥使用,即当资源被一个线程使用(占有)时,别的线程不能使用
  • 2、不可抢占,资源请求者不能强制从资源占有者手中夺取资源,资源只能由资源占有者主动释放。
  • 3、请求和保持,即当资源请求者在请求其他的资源的同时保持对原有资源的占有。
  • 4、循环等待,即存在一个等待队列:P1占有P2的资源,P2占有P3的资源,P3占有P1的资源。这样就形成了一个等待环路。

当上述四个条件都成立的时候,便形成死锁。当然,死锁的情况下如果打破上述任何一个条件,便可让死锁消失。

死锁的避免

加锁顺序
当多个线程需要相同的一些锁,但是按照不同的顺序加锁,死锁就很容易发生。
如果能确保所有的线程都是按照相同的顺序获得锁,那么死锁就不会发生。看下面这个例子:

Thread 1:
	lock A
	lock B

Thread 2:
	wait for A
	lock C (when A locked)

Thread 3:
	wait for A
	wait for B
	wait for C

如果一个线程(比如线程3)需要一些锁,那么它必须按照确定的顺序获取锁。它只有获得了从顺序上排在前面的锁之后,才能获取后面的锁。

例如,线程2和线程3只有在获取了锁A之后才能尝试获取锁C(译者注:获取锁A是获取锁C的必要条件)。因为线程1已经拥有了锁A,所以线程2和3需要一直等到锁A被释放。然后在它们尝试对B或C加锁之前,必须成功地对A加了锁。

按照顺序加锁是一种有效的死锁预防机制。但是,这种方式需要你事先知道所有可能会用到的锁(译者注:并对这些锁做适当的排序),但总有些时候是无法预知的。

加锁时限
另外一个可以避免死锁的方法是在尝试获取锁的时候加一个超时时间,这也就意味着在尝试获取锁的过程中若超过了这个时限该线程则放弃对该锁请求。若一个线程没有在给定的时限内成功获得所有需要的锁,则会进行回退并释放所有已经获得的锁,然后等待一段随机的时间再重试。这段随机的等待时间让其它线程有机会尝试获取相同的这些锁,并且让该应用在没有获得锁的时候可以继续运行(译者注:加锁超时后可以先继续运行干点其它事情,再回头来重复之前加锁的逻辑)。

以下是一个例子,展示了两个线程以不同的顺序尝试获取相同的两个锁,在发生超时后回退并重试的场景:

Thread 1 locks A
Thread 2 locks B

Thread 1 attempts to lock B but is blocked
Thread 2 attempts to lock A but is blocked

Thread 1's lock attempt on B times out
Thread 1 backs up and releases A as well
Thread 1 waits randomly (e.g. 257 millis) before retrying.

Thread 2's lock attempt on A times out
Thread 2 backs up and releases B as well
Thread 2 waits randomly (e.g. 43 millis) before retrying.

在上面的例子中,线程2比线程1早200毫秒进行重试加锁,因此它可以先成功地获取到两个锁。这时,线程1尝试获取锁A并且处于等待状态。当线程2结束时,线程1也可以顺利的获得这两个锁(除非线程2或者其它线程在线程1成功获得两个锁之前又获得其中的一些锁)。

需要注意的是,由于存在锁的超时,所以我们不能认为这种场景就一定是出现了死锁。也可能是因为获得了锁的线程(导致其它线程超时)需要很长的时间去完成它的任务。

此外,如果有非常多的线程同一时间去竞争同一批资源,就算有超时和回退机制,还是可能会导致这些线程重复地尝试但却始终得不到锁。如果只有两个线程,并且重试的超时时间设定为0到500毫秒之间,这种现象可能不会发生,但是如果是10个或20个线程情况就不同了。因为这些线程等待相等的重试时间的概率就高的多(或者非常接近以至于会出现问题)。

这种机制存在一个问题,在Java中不能对synchronized同步块设置超时时间。你需要创建一个自定义锁,或使用Java5中java.util.concurrent包下的工具。写一个自定义锁类不复杂,但超出了本文的内容。后续的Java并发系列会涵盖自定义锁的内容。

死锁检测

死锁检测是一个更好的死锁预防机制,它主要是针对那些不可能实现按序加锁并且锁超时也不可行的场景。

每当一个线程获得了锁,会在线程和锁相关的数据结构中(map、graph等等)将其记下。除此之外,每当有线程请求锁,也需要记录在这个数据结构中。

当一个线程请求锁失败时,这个线程可以遍历锁的关系图看看是否有死锁发生。例如,线程A请求锁7,但是锁7这个时候被线程B持有,这时线程A就可以检查一下线程B是否已经请求了线程A当前所持有的锁。如果线程B确实有这样的请求,那么就是发生了死锁(线程A拥有锁1,请求锁7;线程B拥有锁7,请求锁1)。

当然,死锁一般要比两个线程互相持有对方的锁这种情况要复杂的多。线程A等待线程B,线程B等待线程C,线程C等待线程D,线程D又在等待线程A。线程A为了检测死锁,它需要递进地检测所有被B请求的锁。从线程B所请求的锁开始,线程A找到了线程C,然后又找到了线程D,发现线程D请求的锁被线程A自己持有着。这是它就知道发生了死锁。

下面是一幅关于四个线程(A,B,C和D)之间锁占有和请求的关系图。像这样的数据结构就可以被用来检测死锁。
*

那么当检测出死锁时,这些线程该做些什么呢?

一个可行的做法是释放所有锁,回退,并且等待一段随机的时间后重试。这个和简单的加锁超时类似,不一样的是只有死锁已经发生了才回退,而不会是因为加锁的请求超时了。虽然有回退和等待,但是如果有大量的线程竞争同一批锁,它们还是会重复地死锁(编者注:原因同超时类似,不能从根本上减轻竞争)。

一个更好的方案是给这些线程设置优先级,让一个(或几个)线程回退,剩下的线程就像没发生死锁一样继续保持着它们需要的锁。如果赋予这些线程的优先级是固定不变的,同一批线程总是会拥有相同的优先级。为避免这个问题,可以在死锁发生的时候设置随机的优先级。

2.2 饥饿和公平

如果一个线程因为CPU时间全部被其他线程抢走而得不到CPU运行时间,这种状态被称之为“饥饿”。而该线程被“饥饿致死”正是因为它得不到CPU运行时间的机会。解决饥饿的方案被称之为“公平性” – 即所有线程均能公平地获得运行机会。

Java中导致饥饿的原因

在Java中,下面三个常见的原因会导致线程饥饿:

  • 高优先级线程吞噬所有的低优先级线程的CPU时间
    你能为每个线程设置独自的线程优先级,优先级越高的线程获得的CPU时间越多,线程优先级值设置在1到10之间,而这些优先级值所表示行为的准确解释则依赖于你的应用运行平台。对大多数应用来说,你最好是不要改变其优先级值。
  • 线程被永久堵塞在一个等待进入同步块的状态
    Java的同步代码区也是一个导致饥饿的因素。Java的同步代码区对哪个线程允许进入的次序没有任何保障。这就意味着理论上存在一个试图进入该同步区的线程处于被永久堵塞的风险,因为其他线程总是能持续地先于它获得访问,这即是“饥饿”问题,而一个线程被“饥饿致死”正是因为它得不到CPU运行时间的机会。
  • 线程在等待一个本身(在其上调用wait())也处于永久等待完成的对象如果多个线程处在wait()方法执行上,而对其调用notify()不会保证哪一个线程会获得唤醒,任何线程都有可能处于继续等待的状态。因此存在这样一个风险:一个等待线程从来得不到唤醒,因为其他等待线程总是能被获得唤醒。

线程饥饿的解决方案

使用公平锁

总结:并发编程需要考虑的两个问题:避免死锁、避免饥饿