09、Flink实战:如何自定义DataSink?

前言

前篇介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢?这篇文章将写一个 demo 教大家将从 Kafka Source 的数据 Sink 到 MySQL 中去。

准备工作

我们先来看下 Flink 从 Kafka topic 中获取数据的 demo,首先你需要安装好了 FLink 和 Kafka 。

运行启动 Flink、Zookepeer、Kafka,

[*]nbsp_nbsp

[*]nbsp_nbsp 1

好了,都启动了!

数据库建表

DROP TABLE IF EXISTS student;
CREATE TABLE student (
  id int(11) unsigned NOT NULL AUTO_INCREMENT,
  name varchar(25) COLLATE utf8_bin DEFAULT NULL,
  password varchar(25) COLLATE utf8_bin DEFAULT NULL,
  age int(10) DEFAULT NULL,
  PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

实体类

Student.java

package com.zhisheng.flink.model;

/**
 * Desc:
 * weixin: zhisheng_tian
 * blog: http://www.54tianzhisheng.cn/
 */
public class Student {
    public int id;
    public String name;
    public String password;
    public int age;

    public Student() {
    }

    public Student(int id, String name, String password, int age) {
        this.id = id;
        this.name = name;
        this.password = password;
        this.age = age;
    }

    @Override
    public String toString() {
        return "Student{" +
                "id=" + id +
                ", name='" + name + '\'' +
                ", password='" + password + '\'' +
                ", age=" + age +
                '}';
    }

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getPassword() {
        return password;
    }

    public void setPassword(String password) {
        this.password = password;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }
}

工具类

工具类往 kafka topic student 发送数据

import com.alibaba.fastjson.JSON;
import com.zhisheng.flink.model.Metric;
import com.zhisheng.flink.model.Student;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

/**
 * 往kafka中写数据
 * 可以使用这个main函数进行测试一下
 * weixin: zhisheng_tian
 * blog: http://www.54tianzhisheng.cn/
 */
public class KafkaUtils2 {
    public static final String broker_list = "localhost:9092";
    public static final String topic = "student";  //kafka topic 需要和 flink 程序用同一个 topic

    public static void writeToKafka() throws InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", broker_list);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        KafkaProducer producer = new KafkaProducer<String, String>(props);

        for (int i = 1; i <= 100; i++) {
            Student student = new Student(i, "zhisheng" + i, "password" + i, 18 + i);
            ProducerRecord record = new ProducerRecord<String, String>(topic, null, null, JSON.toJSONString(student));
            producer.send(record);
            System.out.println("发送数据: " + JSON.toJSONString(student));
        }
        producer.flush();
    }

    public static void main(String[] args) throws InterruptedException {
        writeToKafka();
    }
}

SinkToMySQL

该类就是 Sink Function,继承了 RichSinkFunction ,然后重写了里面的方法。在 invoke 方法中将数据插入到 MySQL 中。

package com.zhisheng.flink.sink;

import com.zhisheng.flink.model.Student;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;

/**
 * Desc:
 * weixin: zhisheng_tian
 * blog: http://www.54tianzhisheng.cn/
 */
public class SinkToMySQL extends RichSinkFunction<Student> {
    PreparedStatement ps;
    private Connection connection;

    /**
     * open() 方法中建立连接,这样不用每次 invoke 的时候都要建立连接和释放连接
     *
     * @param parameters
     * @throws Exception
     */
    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        connection = getConnection();
        String sql = "insert into Student(id, name, password, age) values(?, ?, ?, ?);";
        ps = this.connection.prepareStatement(sql);
    }

    @Override
    public void close() throws Exception {
        super.close();
        //关闭连接和释放资源
        if (connection != null) {
            connection.close();
        }
        if (ps != null) {
            ps.close();
        }
    }

    /**
     * 每条数据的插入都要调用一次 invoke() 方法
     *
     * @param value
     * @param context
     * @throws Exception
     */
    @Override
    public void invoke(Student value, Context context) throws Exception {
        //组装数据,执行插入操作
        ps.setInt(1, value.getId());
        ps.setString(2, value.getName());
        ps.setString(3, value.getPassword());
        ps.setInt(4, value.getAge());
        ps.executeUpdate();
    }

    private static Connection getConnection() {
        Connection con = null;
        try {
            Class.forName("com.mysql.jdbc.Driver");
            con = DriverManager.getConnection("jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=UTF-8", "root", "root123456");
        } catch (Exception e) {
            System.out.println("-----------mysql get connection has exception , msg = "+ e.getMessage());
        }
        return con;
    }
}

Flink 程序

这里的source 是从 kafka 读取数据的,然后 Flink 从 Kafka 读取到数据(JSON)后用阿里 fastjson 来解析成 student 对象,然后在 addSink 中使用我们创建的 SinkToMySQL,这样就可以把数据存储到 MySQL 了。

package com.zhisheng.flink;

import com.alibaba.fastjson.JSON;
import com.zhisheng.flink.model.Student;
import com.zhisheng.flink.sink.SinkToMySQL;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;

import java.util.Properties;

/**
 * Desc:
 * weixin: zhisheng_tian
 * blog: http://www.54tianzhisheng.cn/
 */
public class Main3 {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("zookeeper.connect", "localhost:2181");
        props.put("group.id", "metric-group");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("auto.offset.reset", "latest");

        SingleOutputStreamOperator<Student> student = env.addSource(new FlinkKafkaConsumer011<>(
                "student",   //这个 kafka topic 需要和上面的工具类的 topic 一致
                new SimpleStringSchema(),
                props)).setParallelism(1)
                .map(string -> JSON.parseObject(string, Student.class)); //Fastjson 解析字符串成 student 对象

        student.addSink(new SinkToMySQL()); //数据 sink 到 mysql

        env.execute("Flink add sink");
    }
}

结果

运行Flink 程序,然后再运行 KafkaUtils2.java 工具类,这样就可以了。

如果数据插入成功了,那么我们查看下我们的数据库:

[*]nbsp_nbsp 2

数据库中已经插入了 100 条我们从 Kafka 发送的数据了。证明我们的 SinkToMySQL 起作用了。是不是很简单?

项目结构

怕大家不知道我的项目结构,这里发个截图看下:

[*]nbsp_nbsp 3

版权声明:本文不是「本站」原创文章,版权归原作者所有 | 原文地址: