目录
0、 相关文章链接;
1、 流处理和关系代数(表,及SQL)的区别;
2、 动态表(DynamicTables);
3、 流式持续查询的过程;
3、 1.概述;
3、 2.将流转换成表(Table);
3、 3.持续查询(ContinuousQuery);
4、 将动态表转换成流;
4、 1.仅追加(Append-only)流;
4、 2.撤回(Retract)流;
4、 3.Upsert(更新插入)流;
4、 4.动态表转换成流总结;
5、 TableAPI和FlinkSQL的时间特性概述;
6、 处理时间(ProcessingTime);
6、 1.DataStream转化成Table时指定;
6、 2.定义TableSchema时指定;
6、 3.创建表的DDL中指定;
7、 事件时间(EventTime);
7、 1.DataStream转化成Table时指定;
7、 2.定义TableSchema时指定;
7、 3.创建表的DDL中指定;
0. 相关文章链接
1. 流处理和关系代数(表,及SQL)的区别
Table API和SQL,本质上还是基于关系型表的操作方式;而关系型表、关系代数,以及SQL本身,一般是有界的,更适合批处理的场景。这就导致在进行流处理的过程中,理解会稍微复杂一些,需要引入一些特殊概念。
可以看到,其实关系代数(主要就是指关系型数据库中的表)和SQL,主要就是针对批处理的,这和流处理有天生的隔阂。
2. 动态表**(Dynamic Tables)**
因为流处理面对的数据,是连续不断的,这和我们熟悉的关系型数据库中保存的“表”完全不同。所以,如果我们把流数据转换成Table,然后执行类似于table的select操作,结果就不是一成不变的,而是随着新数据的到来,会不停更新。
我们可以随着新数据的到来,不停地在之前的基础上更新结果。这样得到的表,在Flink Table API概念里,就叫做“动态表”(Dynamic Tables)。
动态表是Flink对流数据的Table API和SQL支持的核心概念。与表示批处理数据的静态表不同,动态表是随时间变化的。动态表可以像静态的批处理表一样进行查询,查询一个动态表会产生持续查询(Continuous Query)。连续查询永远不会终止,并会生成另一个动态表。查询(Query)会不断更新其动态结果表,以反映其动态输入表上的更改。
3. 流式持续查询的过程
3.1. 概述
下图显示了流、动态表和连续查询的关系:
流式持续查询的过程为:
1、 流被转换为动态表;
2、 对动态表计算连续查询,生成新的动态表;
3、 生成的动态表被转换回流;
3.2. 将流转换成表(Table)
为了处理带有关系查询的流,必须先将其转换为表。
从概念上讲,流的每个数据记录,都被解释为对结果表的插入(Insert)修改。因为流式持续不断的,而且之前的输出结果无法改变。本质上,我们其实是从一个、只有插入操作的changelog(更新日志)流,来构建一个表。
为了更好地说明动态表和持续查询的概念,我们来举一个具体的例子。
比如,我们现在的输入数据,就是用户在网站上的访问行为,数据类型(Schema)如下:
[
user: VARCHAR, // 用户名
cTime: TIMESTAMP, // 访问某个URL的时间戳
url: VARCHAR // 用户访问的URL
]
下图显示了如何将访问URL事件流,或者叫点击事件流(左侧)转换为表(右侧)。
随着插入更多的访问事件流记录,生成的表将不断增长。
3.3. 持续查询(Continuous Query)
- 持续查询,会在动态表上做计算处理,并作为结果生成新的动态表。与批处理查询不同,连续查询从不终止,并根据输入表上的更新更新其结果表。
- 在任何时间点,连续查询的结果在语义上,等同于在输入表的快照上,以批处理模式执行的同一查询的结果。
- 在下面的示例中,我们展示了对点击事件流中的一个持续查询。
- 这个Query很简单,是一个分组聚合做count统计的查询。它将用户字段上的clicks表分组,并统计访问的url数。图中显示了随着时间的推移,当clicks表被其他行更新时如何计算查询。
4. 将动态表转换成流
与常规的数据库表一样,动态表可以通过插入(Insert)、更新(Update)和删除(Delete)更改,进行持续的修改。将动态表转换为流或将其写入外部系统时,需要对这些更改进行编码。Flink的Table API和SQL支持三种方式对动态表的更改进行编码:
4.1. 仅追加(Append-only)流
仅通过插入(Insert)更改,来修改的动态表,可以直接转换为“仅追加”流。这个流中发出的数据,就是动态表中新增的每一行。
4.2. 撤回(Retract)流
Retract流是包含两类消息的流,添加(Add)消息和撤回(Retract)消息。
动态表通过将INSERT 编码为add消息、DELETE 编码为retract消息、UPDATE编码为被更改行(前一行)的retract消息和更新后行(新行)的add消息,转换为retract流。
下图显示了将动态表转换为Retract流的过程。
4.3. Upsert(更新插入)流
Upsert流包含两种类型的消息:Upsert消息和delete消息。转换为upsert流的动态表,需要有唯一的键(key)。
通过将INSERT和UPDATE更改编码为upsert消息,将DELETE更改编码为DELETE消息,就可以将具有唯一键(Unique Key)的动态表转换为流。
下图显示了将动态表转换为upsert流的过程。
4.4. 动态表转换成流总结
这些概念我们之前都已提到过。需要注意的是,在代码里将动态表转换为DataStream时,仅支持Append和Retract流。而向外部系统输出动态表的TableSink接口,则可以有不同的实现,比如之前我们讲到的ES,就可以有Upsert模式。
5. TableAPI 和 FlinkSQL 的时间特性概述
基于时间的操作(比如Table API和SQL中窗口操作),需要定义相关的时间语义和时间数据来源的信息。所以,Table可以提供一个逻辑上的时间字段,用于在表处理程序中,指示时间和访问相应的时间戳。
时间属性,可以是每个表schema的一部分。一旦定义了时间属性,它就可以作为一个字段引用,并且可以在基于时间的操作中使用。
时间属性的行为类似于常规时间戳,可以访问,并且进行计算。
6. 处理时间(Processing Time)
处理时间语义下,允许表处理程序根据机器的本地时间生成结果。它是时间的最简单概念。它既不需要提取时间戳,也不需要生成watermark。
定义处理时间属性有三种方法:在DataStream转化时直接指定;在定义Table Schema时指定;在创建表的DDL中指定。
6.1. DataStream转化成Table时指定
由DataStream转换成表时,可以在后面指定字段名来定义Schema。在定义Schema期间,可以使用.proctime,定义处理时间字段。
注意,这个proctime属性只能通过附加逻辑字段,来扩展物理schema。因此,只能在schema定义的末尾定义它。
// 定义好 DataStream
val inputStream: DataStream[String] = env.readTextFile("\\sensor.txt")
val dataStream: DataStream[SensorReading] = inputStream
.map(data => {
val dataArray = data.split(",")
SensorReading(dataArray(0), dataArray(1).toLong, dataArray(2).toDouble)
})
// 将 DataStream转换为 Table,并指定时间字段
val sensorTable = tableEnv.fromDataStream(dataStream, 'id, 'temperature, 'timestamp, 'pt.proctime)
6.2. 定义Table Schema时指定
这种方法其实也很简单,只要在定义Schema的时候,加上一个新的字段,并指定成proctime就可以了。代码如下:
tableEnv.connect(
new FileSystem().path("..\\sensor.txt"))
.withFormat(new Csv())
.withSchema(new Schema()
.field("id", DataTypes.STRING())
.field("timestamp", DataTypes.BIGINT())
.field("temperature", DataTypes.DOUBLE())
.field("pt", DataTypes.TIMESTAMP(3))
.proctime() // 指定 pt字段为处理时间
) // 定义表结构
.createTemporaryTable("inputTable") // 创建临时表
6.3. 创建表的DDL中指定
在创建表的DDL中,增加一个字段并指定成proctime,也可以指定当前的时间字段。
代码如下:
val sinkDDL: String =
"""
|create table dataTable (
| id varchar(20) not null,
| ts bigint,
| temperature double,
| pt AS PROCTIME()
|) with (
| 'connector.type' = 'filesystem',
| 'connector.path' = 'file:///D:\\..\\sensor.txt',
| 'format.type' = 'csv'
|)
""".stripMargin
tableEnv.sqlUpdate(sinkDDL) // 执行 DDL
注意:运行这段DDL,必须使用Blink Planner。
7. 事件时间(Event Time)
事件时间语义,允许表处理程序根据每个记录中包含的时间生成结果。这样即使在有乱序事件或者延迟事件时,也可以获得正确的结果。
为了处理无序事件,并区分流中的准时和迟到事件;Flink需要从事件数据中,提取时间戳,并用来推进事件时间的进展(watermark)。
7.1. DataStream转化成Table时指定
在DataStream转换成Table,schema的定义期间,使用.rowtime可以定义事件时间属性。注意,必须在转换的数据流中分配时间戳和watermark。
在将数据流转换为表时,有两种定义时间属性的方法。根据指定的.rowtime字段名是否存在于数据流的架构中,timestamp字段可以:
1、 作为新字段追加到schema;
2、 替换现有字段;
在这两种情况下,定义的事件时间戳字段,都将保存DataStream中事件时间戳的值。
代码如下:
val inputStream: DataStream[String] = env.readTextFile("\\sensor.txt")
val dataStream: DataStream[SensorReading] = inputStream
.map(data => {
val dataArray = data.split(",")
SensorReading(dataArray(0), dataArray(1).toLong, dataArray(2).toDouble)
})
.assignAscendingTimestamps(_.timestamp * 1000L)
// 将 DataStream转换为 Table,并指定时间字段
val sensorTable = tableEnv.fromDataStream(dataStream, 'id, 'timestamp.rowtime, 'temperature)
// 或者,直接追加字段
val sensorTable2 = tableEnv.fromDataStream(dataStream, 'id, 'temperature, 'timestamp, 'rt.rowtime)
7.2. 定义Table Schema时指定
这种方法只要在定义Schema的时候,将事件时间字段,并指定成rowtime就可以了。
代码如下:
tableEnv.connect(
new FileSystem().path("sensor.txt"))
.withFormat(new Csv())
.withSchema(new Schema()
.field("id", DataTypes.STRING())
.field("timestamp", DataTypes.BIGINT())
.rowtime(
new Rowtime()
.timestampsFromField("timestamp") // 从字段中提取时间戳
.watermarksPeriodicBounded(1000) // watermark延迟1秒
)
.field("temperature", DataTypes.DOUBLE())
) // 定义表结构
.createTemporaryTable("inputTable") // 创建临时表
7.3. 创建表的DDL中指定
事件时间属性,是使用CREATE TABLE DDL中的WARDMARK语句定义的。watermark语句,定义现有事件时间字段上的watermark生成表达式,该表达式将事件时间字段标记为事件时间属性。代码如下:
val sinkDDL: String =
"""
|create table dataTable (
| id varchar(20) not null,
| ts bigint,
| temperature double,
| rt AS TO_TIMESTAMP( FROM_UNIXTIME(ts) ),
| watermark for rt as rt - interval '1' second
|) with (
| 'connector.type' = 'filesystem',
| 'connector.path' = 'file:///D:\\..\\sensor.txt',
| 'format.type' = 'csv'
|)
""".stripMargin
tableEnv.sqlUpdate(sinkDDL) // 执行 DDL
这里FROM_UNIXTIME是系统内置的时间函数,用来将一个整数(秒数)转换成“YYYY-MM-DD hh:mm:ss”格式(默认,也可以作为第二个String参数传入)的日期时间字符串(date time string);然后再用TO_TIMESTAMP将其转换成Timestamp。
注:其他相关文章链接由此进 ->Flink文章汇总
版权声明:本文不是「本站」原创文章,版权归原作者所有 | 原文地址: