33、Flink基础:TableAPI和FlinkSQL之函数

文章目录

  • 一. 函数
    • 1.1 系统内置函数
  • 1.2 UDF
    • 1.2.1 注册用户自定义函数 UDF
    • 1.2.2 标量函数(Scalar Functions)
    • 1.2.3 表函数(Table Functions)
    • 1.2.4 聚合函数(Aggregate Functions)
    • 1.2.5 表聚合函数(Table Aggregate Functions)
  • 二.案例
    • 2.1 Scalar Function
  • 2.2 Table Function
  • 2.3 Aggregate Function
  • 参考:

一. 函数

  Flink Table 和 SQL 内置了很多 SQL 中支持的函数;如果有无法满足的需要,则可以实 现用户自定义的函数(UDF)来解决。

1.1 系统内置函数

  Flink Table API 和 SQL 为用户提供了一组用于数据转换的内置函数。SQL 中支持的很多 函数,Table API 和 SQL 都已经做了实现,其它还在快速开发扩展中。

  以下是一些典型函数的举例,全部的内置函数,可以参考官网介绍。
*比较函数
SQL:
value1 = value2
value1 > value2

Table API:
ANY1 === ANY2
ANY1 > ANY2

*逻辑函数
SQL:
boolean1 OR boolean2
boolean IS FALSE
NOTboolean

Table API:
BOOLEAN1 || BOOLEAN2
BOOLEAN.isFalse
!BOOLEAN

*算术函数
SQL:
numeric1 + numeric2
POWER(numeric1, numeric2)

Table API:
NUMERIC1 + NUMERIC2
NUMERIC1.power(NUMERIC2)

*字符串函数
SQL:
string1 || string2
UPPER(string)
CHAR_LENGTH(string)

Table API:
STRING1 + STRING2
STRING.upperCase()
STRING.charLength()

*时间函数
SQL:
DATE string
TIMESTAMP string
CURRENT_TIME
INTERVAL string range

Table API:
STRING.toDate
STRING.toTimestamp
currentTime()
NUMERIC.days
NUMERIC.minutes

*聚合函数
SQL:
COUNT(*)
SUM([ ALL | DISTINCT ] expression)
RANK()
ROW_NUMBER()

Table API:
FIELD.count
FIELD.sum0

1.2 UDF

  用户定义函数(User-defined Functions,UDF)是一个重要的特性,因为它们显著地扩 展了查询(Query)的表达能力。一些系统内置函数无法解决的需求,我们可以用 UDF 来自 定义实现。

1.2.1 注册用户自定义函数 UDF

  在大多数情况下,用户定义的函数必须先注册,然后才能在查询中使用。不需要专门为Scala 的 Table API 注册函数。

  函数通过调用 registerFunction()方法在 TableEnvironment 中注册。当用户定义的函数被注册时,它被插入到 TableEnvironment 的函数目录中,这样 Table API 或 SQL 解析器就可 以识别并正确地解释它。

1.2.2 标量函数(Scalar Functions)

  用户定义的标量函数,可以将 0、1 或多个标量值,映射到新的标量值。 为了定义标量函数,必须在 org.apache.flink.table.functions 中扩展基类 Scalar Function,并实现(一个或多个)求值(evaluation,eval)方法。标量函数的行为由求值方法决定, 求值方法必须公开声明并命名为 eval(直接 def 声明,没有 override)。求值方法的参数类型 和返回类型,确定了标量函数的参数和返回类型。

  在下面的代码中,我们定义自己的 HashCode 函数,在 TableEnvironment 中注册它,并 在查询中调用它。

// 自定义一个标量函数

public static class HashCode extends ScalarFunction {
   
     

private int factor = 13;

public HashCode(int factor) {
   
     
this.factor = factor;
}
public int eval(String s) {
   
     
return s.hashCode() * factor;
}

}

主函数中调用,计算 sensor id 的哈希值(前面部分照抄,流环境、表环境、读取 source、 建表):

public static void main(String[] args) throws Exception {
   
     
// 1. 创建环境

    StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();

    env.setParallelism(1);

    StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
    // 2. 读取文件,得到 DataStream
    String filePath = "..\\sensor.txt";
    DataStream<String> inputStream = env.readTextFile(filePath);
    // 3. 转换成 Java Bean,并指定 timestamp 和 watermark

    DataStream<SensorReading> dataStream = inputStream.map( line -> {
   
     
String[] fields = line.split(",");

    return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
} );
    // 4. 将 DataStream 转换为 Table
    Table sensorTable = tableEnv.fromDataStream(dataStream, "id, timestamp as ts, temperature");

    // 5. 调用自定义 hash 函数,对 id 进行 hash 运算
    HashCode hashCode = new HashCode(23);
    tableEnv.registerFunction("hashCode", hashCode);
    Table resultTable = sensorTable.select("id, ts, hashCode(id)");

    //	sql
    tableEnv.createTemporaryView("sensor", sensorTable);
Table resultSqlTable = tableEnv.sqlQuery("select id, ts, hashCode(id) from sensor");
    tableEnv.toAppendStream(resultTable, Row.class).print("result");
    tableEnv.toRetractStream(resultSqlTable, Row.class).print("sql");

    env.execute("scalar function test");

1.2.3 表函数(Table Functions)

  与用户定义的标量函数类似,用户定义的表函数,可以将 0、1 或多个标量值作为输入 参数;与标量函数不同的是,它可以返回任意数量的行作为输出,而不是单个值。

  为了定义一个表函数,必须扩展 org.apache.flink.table.functions 中的基类 TableFunction 并实现(一个或多个)求值方法。表函数的行为由其求值方法决定,求值方法必须是 public 的,并命名为 eval。求值方法的参数类型,决定表函数的所有有效参数。

  返回表的类型由 TableFunction 的泛型类型确定。求值方法使用 protected collect(T)方 法发出输出行。

  在Table API 中,Table 函数需要与.joinLateral 或.leftOuterJoinLateral 一起使用。joinLateral 算子,会将外部表中的每一行,与表函数(TableFunction,算子的参数是它 的表达式)计算得到的所有行连接起来。而 leftOuterJoinLateral 算子,则是左外连接,它同样会将外部表中的每一行与表函数计 算生成的所有行连接起来;并且,对于表函数返回的是空表的外部行,也要保留下来。

  在SQL 中,则需要使用 Lateral Table(),或者带有 ON TRUE 条件的左连 接。

  下面的代码中,我们将定义一个表函数,在表环境中注册它,并在查询中调用它。 自定义 TableFunction:

// 自定义 TableFunction

public static class Split extends TableFunction<Tuple2<String, Integer>> {
   
     

private String separator = ",";
public Split(String separator) {
   
     
this.separator = separator;
}
// 类似 flatmap,没有返回值
public void eval(String str) {
   
     
for (String s : str.split(separator)) {
   
     
collect(new Tuple2<String, Integer>(s, s.length()));
}

}

}

接下来,就是在代码中调用。首先是 Table API 的方式:

Split split = new Split("_"); tableEnv.registerFunction("split", split); Table resultTable = sensorTable
.joinLateral( "split(id) as (word, length)")
.select("id, ts, word, length");

然后是SQL 的方式:

tableEnv.createTemporaryView("sensor", sensorTable);

Table resultSqlTable = tableEnv.sqlQuery("select id, ts, word, length " +
"from sensor, lateral table( split(id) ) as splitId(word, length)");

1.2.4 聚合函数(Aggregate Functions)

  用户自定义聚合函数(User-Defined Aggregate Functions,UDAGGs)可以把一个表中的 数据,聚合成一个标量值。用户定义的聚合函数,是通过继承 AggregateFunction 抽象类实 现的。

*

上图中显示了一个聚合的例子。 假设现在有一张表,包含了各种饮料的数据。该表由三列(id、name 和 price)、五行组成数据。现在我们需要找到表中所有饮料的最高价格,即执行 max()聚合,结果将是一个数值。

AggregateFunction 的工作原理如下。
*首先,它需要一个累加器,用来保存聚合中间结果的数据结构(状态)。可以通过 调用 AggregateFunction 的 createAccumulator()方法创建空累加器。
*随后,对每个输入行调用函数的 accumulate()方法来更新累加器。
*处理完所有行后,将调用函数的 getValue()方法来计算并返回最终结果。 AggregationFunction 要求必须实现的方法:
•createAccumulator()
•accumulate()
•getValue()

除了上述方法之外,还有一些可选择实现的方法。其中一些方法,可以让系统执行查询 更有效率,而另一些方法,对于某些场景是必需的。例如,如果聚合函数应用在会话窗口
(session group window)的上下文中,则 merge()方法是必需的。
•retract()
•merge()
•resetAccumulator()

接下来我们写一个自定义 AggregateFunction,计算一下每个 sensor 的平均温度值.

// 定义 AggregateFunction 的 Accumulator

public static class AvgTempAcc {
   
     

double sum = 0.0;

int count = 0;

}

// 自定义一个聚合函数,求每个传感器的平均温度值,保存状态(tempSum,  tempCount)

public static class AvgTemp extends AggregateFunction<Double, AvgTempAcc>{
   
     

@Override

public Double getValue(AvgTempAcc accumulator) {
   
     

return accumulator.sum / accumulator.count;

}

@Override

public AvgTempAcc createAccumulator() {
   
     

return new AvgTempAcc();

}

// 实现一个具体的处理计算函数,accumulate

public void accumulate( AvgTempAcc accumulator, Double temp) {
   
     
accumulator.sum += temp;

accumulator.count += 1;

}
}

接下来就可以在代码中调用了。

// 创建一个聚合函数实例

AvgTemp avgTemp = new AvgTemp();
// Table API 的调用

tableEnv.registerFunction("avgTemp", avgTemp); Table resultTable = sensorTable
.groupBy("id")
.aggregate("avgTemp(temperature) as avgTemp")
.select("id, avgTemp");

// sql
tableEnv.createTemporaryView("sensor", sensorTable);
Table resultSqlTable = tableEnv.sqlQuery("select id, avgTemp(temperature) " +
"from sensor group by id");

tableEnv.toRetractStream(resultTable, Row.class).print("result"); tableEnv.toRetractStream(resultSqlTable, Row.class).print("sql");

1.2.5 表聚合函数(Table Aggregate Functions)

  用户定义的表聚合函数(User-Defined Table Aggregate Functions,UDTAGGs),可以把一 个表中数据,聚合为具有多行和多列的结果表。这跟 AggregateFunction 非常类似,只是之 前聚合结果是一个标量值,现在变成了一张表。

*

比如现在我们需要找到表中所有饮料的前 2 个最高价格,即执行 top2()表聚合。我 们需要检查 5 行中的每一行,得到的结果将是一个具有排序后前 2 个值的表。
用户定义的表聚合函数,是通过继承 TableAggregateFunction 抽象类来实现的。

TableAggregateFunction 的工作原理如下。
*首先,它同样需要一个累加器(Accumulator),它是保存聚合中间结果的数据结构。
通过调用 TableAggregateFunction 的 createAccumulato(r)方法可以创建空累加器。

*随后,对每个输入行调用函数的 accumulate()方法来更新累加器。

*处理完所有行后,将调用函数的 emitValue()方法来计算并返回最终结果。

AggregationFunction 要求必须实现的方法:
•createAccumulator()
•accumulate()

除了上述方法之外,还有一些可选择实现的方法。
•retract()
•merge()
•resetAccumulator()
•emitValue()
•emitUpdateWithRetract()

接下来我们写一个自定义 TableAggregateFunction,用来提取每个 sensor 最高的两个温 度值。

// 先定义一个 Accumulator

public static class Top2TempAcc {
   
     

double highestTemp = Double.MIN_VALUE;

double secondHighestTemp = Double.MIN_VALUE;

}

// 自定义表聚合函数
public static class Top2Temp extends TableAggregateFunction<Tuple2<Double, Integer>, Top2TempAcc> {
   
     
@Override

public Top2TempAcc createAccumulator() {
   
     

return new Top2TempAcc();

}

// 实现计算聚合结果的函数 accumulate
public void accumulate(Top2TempAcc acc, Double temp) {
   
     

if (temp > acc.highestTemp) {
   
      acc.secondHighestTemp = acc.highestTemp; acc.highestTemp = temp;
} else if (temp > acc.secondHighestTemp) {
   
      acc.secondHighestTemp = temp;
}

}
// 实现一个输出结果的方法,最终处理完表中所有数据时调用

public void emitValue(Top2TempAcc acc, Collector<Tuple2<Double, Integer>> out) {
   
     
out.collect(new Tuple2<>(acc.highestTemp, 1));

out.collect(new Tuple2<>(acc.secondHighestTemp, 2));

}

}

接下来就可以在代码中调用了。

// 创建一个表聚合函数实例

Top2Temp top2Temp = new Top2Temp(); tableEnv.registerFunction("top2Temp", top2Temp); Table resultTable = sensorTable
.groupBy("id")
.flatAggregate("top2Temp(temperature) as (temp, rank)")
.select("id, temp, rank");

tableEnv.toRetractStream(resultTable, Row.class).print("result");

二.案例

2.1 Scalar Function

代码:

package org.flink.tableapi.udf;

import org.flink.beans.SensorReading;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.types.Row;

/**
 * @author 只是甲
 * @date   2021-09-30
 */

public class UdfTest1_ScalarFunction {
   
     
    public static void main(String[] args) throws Exception{
   
     
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

        // 1. 读取数据
        DataStreamSource<String> inputStream = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkStudy\\src\\main\\resources\\sensor.txt");

        // 2. 转换成POJO
        DataStream<SensorReading> dataStream = inputStream.map(line -> {
   
     
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        });

        // 3. 将流转换成表
        Table sensorTable = tableEnv.fromDataStream(dataStream, "id, timestamp as ts, temperature as temp");

        // 4. 自定义标量函数,实现求id的hash值
        // 4.1 table API
        HashCode hashCode = new HashCode(23);
        // 需要在环境中注册UDF
        tableEnv.registerFunction("hashCode", hashCode);
        Table resultTable = sensorTable.select("id, ts, hashCode(id)");

        // 4.2 SQL
        tableEnv.registerTable("sensor", sensorTable);
        Table resultSqlTable = tableEnv.sqlQuery("select id, ts, hashCode(id) from sensor");

        // 打印输出
        tableEnv.toAppendStream(resultTable, Row.class).print("result");
        tableEnv.toAppendStream(resultSqlTable, Row.class).print("sql");

        env.execute();
    }

    // 实现自定义的ScalarFunction
    public static class HashCode extends ScalarFunction{
   
     
        private int factor = 13;

        public HashCode(int factor) {
   
     
            this.factor = factor;
        }

        public int eval(String str){
   
     
            return str.hashCode() * factor;
        }
    }
}

测试记录:
*

2.2 Table Function

代码:

package org.flink.tableapi.udf;
import org.flink.beans.SensorReading;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.types.Row;

/**
 * @author 只是甲
 * @date   2021-09-30
 */

public class UdfTest2_TableFunction {
   
     
    public static void main(String[] args) throws Exception{
   
     
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

        // 1. 读取数据
        DataStreamSource<String> inputStream = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkStudy\\src\\main\\resources\\sensor.txt");

        // 2. 转换成POJO
        DataStream<SensorReading> dataStream = inputStream.map(line -> {
   
     
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        });

        // 3. 将流转换成表
        Table sensorTable = tableEnv.fromDataStream(dataStream, "id, timestamp as ts, temperature as temp");

        // 4. 自定义表函数,实现将id拆分,并输出(word, length)
        // 4.1 table API
        Split split = new Split("_");

        // 需要在环境中注册UDF
        tableEnv.registerFunction("split", split);
        Table resultTable = sensorTable
                .joinLateral("split(id) as (word, length)")
                .select("id, ts, word, length");

        // 4.2 SQL
        tableEnv.registerTable("sensor", sensorTable);
        Table resultSqlTable = tableEnv.sqlQuery("select id, ts, word, length " +
                " from sensor, lateral table(split(id)) as splitid(word, length)");

        // 打印输出
        tableEnv.toAppendStream(resultTable, Row.class).print("result");
        tableEnv.toAppendStream(resultSqlTable, Row.class).print("sql");

        env.execute();
    }

    // 实现自定义TableFunction
    public static class Split extends TableFunction<Tuple2<String, Integer>>{
   
     
        // 定义属性,分隔符
        private String separator = ",";

        public Split(String separator) {
   
     
            this.separator = separator;
        }

        // 必须实现一个eval方法,没有返回值
        public void eval( String str ){
   
     
            for( String s: str.split(separator) ){
   
     
                collect(new Tuple2<>(s, s.length()));
            }
        }
    }
}

测试记录:
*

2.3 Aggregate Function

代码:

package org.flink.tableapi.udf;
import org.flink.beans.SensorReading;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.functions.AggregateFunction;
import org.apache.flink.types.Row;
/**
 * @author 只是甲
 * @date   2021-09-30
 */

public class UdfTest3_AggregateFunction {
   
     
    public static void main(String[] args) throws Exception{
   
     
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

        // 1. 读取数据
        DataStreamSource<String> inputStream = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkStudy\\src\\main\\resources\\sensor.txt");

        // 2. 转换成POJO
        DataStream<SensorReading> dataStream = inputStream.map(line -> {
   
     
            String[] fields = line.split(",");
            return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
        });

        // 3. 将流转换成表
        Table sensorTable = tableEnv.fromDataStream(dataStream, "id, timestamp as ts, temperature as temp");

        // 4. 自定义聚合函数,求当前传感器的平均温度值
        // 4.1 table API
        AvgTemp avgTemp = new AvgTemp();

        // 需要在环境中注册UDF
        tableEnv.registerFunction("avgTemp", avgTemp);
        Table resultTable = sensorTable
                .groupBy("id")
                .aggregate( "avgTemp(temp) as avgtemp" )
                .select("id, avgtemp");

        // 4.2 SQL
        tableEnv.registerTable("sensor", sensorTable);
        Table resultSqlTable = tableEnv.sqlQuery("select id, avgTemp(temp) " +
                " from sensor group by id");

        // 打印输出
        tableEnv.toRetractStream(resultTable, Row.class).print("result");
        tableEnv.toRetractStream(resultSqlTable, Row.class).print("sql");

        env.execute();
    }

    // 实现自定义的AggregateFunction
    public static class AvgTemp extends AggregateFunction<Double, Tuple2<Double, Integer>>{
   
     
        @Override
        public Double getValue(Tuple2<Double, Integer> accumulator) {
   
     
            return accumulator.f0 / accumulator.f1;
        }

        @Override
        public Tuple2<Double, Integer> createAccumulator() {
   
     
            return new Tuple2<>(0.0, 0);
        }

        // 必须实现一个accumulate方法,来数据之后更新状态
        public void accumulate( Tuple2<Double, Integer> accumulator, Double temp ){
   
     
            accumulator.f0 += temp;
            accumulator.f1 += 1;
        }
    }
}

测试记录:
*

参考:

1、 https://www.bilibili.com/video/BV1qy4y1q728;
2. https://ashiamd.github.io/docsify-notes/#/study/BigData/Flink/%E5%B0%9A%E7%A1%85%E8%B0%B7Flink%E5%85%A5%E9%97%A8%E5%88%B0%E5%AE%9E%E6%88%98-%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0?id=_11-table-api%e5%92%8cflink-sql

版权声明:本文不是「本站」原创文章,版权归原作者所有 | 原文地址: