一 序:
Sharding-JDBC由于性能方面的考量,决定不支持强一致性分布式事务。目前支持的:
- Best efforts delivery transaction (已经实现).
- Try confirm cancel transaction (待定).
最大努力送达型:在分布式数据库的场景下,相信对于该数据库的操作最终一定可以成功,所以通过最大努力反复尝试送达操作。
实际上可以看看图上的流程,不管执行结果如何,执行前事件都会记录事务日志;执行事件类型包括3种:BEFORE_EXECUTE,EXECUTE_FAILURE和EXECUTE_SUCCESS;另外,这里的”同步“不是绝对的同步执行,而是通过google-guava的EventBus发布事件后,在监听端判断是EXECUTE_FAILURE事件,最多重试syncMaxDeliveryTryTimes次;
适用场景
- 根据主键删除数据。
- 更新记录永久状态,如更新通知送达状态。
使用限制
使用最大努力送达型柔性事务的SQL需要满足幂等性。
- INSERT语句要求必须包含主键,且不能是自增主键。
- UPDATE语句要求幂等,不能是UPDATE xxx SET x=x+1
- DELETE语句无要求。
这里看看官网demo:http://shardingjdbc.io/document/legacy/2.x/cn/02-guide/transaction/
整个过程通过如下 组件 完成:
柔性事务管理器
最大努力送达型柔性事务
最大努力送达型事务监听器
事务日志存储器
最大努力送达型异步作业
二 柔性事务管理器
之前的《 SQL执行》对ExecutorEngine的分析可知,sharding-jdbc在执行SQL前后,分别调用EventBusInstance.getInstance().post()提交了事件,那么调用EventBusInstance.getInstance().register()的地方,就是柔性事务处理的地方,通过查看源码的调用关系可知,只有SoftTransactionManager.init()调用了EventBusInstance.getInstance().register(),所以柔性事务实现的核心在SoftTransactionManager这里;
2.1 SoftTransactionManager
柔性事务管理器,SoftTransactionManager 实现,负责对柔性事务配置( SoftTransactionConfiguration ) 、柔性事务( AbstractSoftTransaction )的管理。
public final class SoftTransactionManager {
private static final String TRANSACTION = "transaction";
private static final String TRANSACTION_CONFIG = "transactionConfig";
@Getter
private final SoftTransactionConfiguration transactionConfig;
/**
* Initialize B.A.S.E transaction manager.
*
* @throws SQLException SQL exception
*/
public void init() throws SQLException {
// 初始化 最大努力送达型事务监听器
EventBusInstance.getInstance().register(new BestEffortsDeliveryListener());
// 初始化 事务日志数据库存储表
if (TransactionLogDataSourceType.RDB == transactionConfig.getStorageType()) {
Preconditions.checkNotNull(transactionConfig.getTransactionLogDataSource());
createTable();
}
// 初始化 内嵌的最大努力送达型异步作业
if (transactionConfig.getBestEffortsDeliveryJobConfiguration().isPresent()) {
new NestedBestEffortsDeliveryJobFactory(transactionConfig).init();
}
}
通过上面的代码,可知这里的涉及的重点如下:
将最大努力送达型事务监听器( BestEffortsDeliveryListener )注册到事务总线 ( EventBus ),
当使用数据库存储事务日志( TransactionLog ) 时,若事务日志表( transaction_log )不存在则进行创建.
当配置使用内嵌的最大努力送达型异步作业( NestedBestEffortsDeliveryJob ) 时,进行初始化
2.2 SoftTransactionConfiguration
柔性事务配置对象
public class SoftTransactionConfiguration {
/**
* Data source for transaction manager.
*/
@Getter(AccessLevel.NONE)
private final DataSource targetDataSource;
/**
* Max synchronized delivery try times.
*/
private int syncMaxDeliveryTryTimes = 3;
/**
* Transaction log storage type.
*/
private TransactionLogDataSourceType storageType = RDB;
/**
* Transaction log data source.
*/
private DataSource transactionLogDataSource;
/**
* Embed best efforts delivery B.A.S.E transaction asynchronized job configuration.
*/
private Optional<NestedBestEffortsDeliveryJobConfiguration> bestEffortsDeliveryJobConfiguration = Optional.absent();
2.3 柔性事务
在Sharding-JDBC 里,目前柔性事务分成两种:
BEDSoftTransaction :最大努力送达型柔性事务
TCCSoftTransaction :TCC型柔性事务
继承AbstractSoftTransaction
public abstract class AbstractSoftTransaction {
private boolean previousAutoCommit;
@Getter
private ShardingConnection connection;
@Getter
private SoftTransactionType transactionType;
@Getter
private String transactionId;
提供了开始事务beginInternal,结束事务end供子类调用。
protected final void beginInternal(final Connection conn, final SoftTransactionType type) throws SQLException {
// TODO 判断如果在传统事务中,则抛异常
Preconditions.checkArgument(conn instanceof ShardingConnection, "Only ShardingConnection can support eventual consistency transaction.");
// 设置执行错误,不抛出异常
ExecutorExceptionHandler.setExceptionThrown(false);
connection = (ShardingConnection) conn;
transactionType = type;
//设置自动提交状态
previousAutoCommit = connection.getAutoCommit();
connection.setAutoCommit(true);
// TODO replace to snowflake:以后用snowflake生成事务编号替换uuid
transactionId = UUID.randomUUID().toString();
}
注意点:1 。SQL异常不抛出,会继续执行。
2、 自动提交,所以不支持回滚;
public final void end() throws SQLException {
if (null != connection) {
ExecutorExceptionHandler.setExceptionThrown(true);
connection.setAutoCommit(previousAutoCommit);
SoftTransactionManager.closeCurrentTransactionManager();
}
}
/**
* Close transaction manager from current thread.
*/
static void closeCurrentTransactionManager() {
ExecutorDataMap.getDataMap().put(TRANSACTION, null);
ExecutorDataMap.getDataMap().put(TRANSACTION_CONFIG, null);
}
end作用是事务结束后清理线程变量。
BEDSoftTransaction
public class BEDSoftTransaction extends AbstractSoftTransaction {
/**
* Begin transaction.
*
* @param connection database connection
* @throws SQLException SQL exception
*/
public void begin(final Connection connection) throws SQLException {
beginInternal(connection, SoftTransactionType.BestEffortsDelivery);
}
}
2.4 创建柔性事务
通过调用 SoftTransactionManager.getTransaction() 创建柔性事务对象:
public AbstractSoftTransaction getTransaction(final SoftTransactionType type) {
AbstractSoftTransaction result;
switch (type) {
case BestEffortsDelivery:
result = new BEDSoftTransaction();
break;
case TryConfirmCancel:
result = new TCCSoftTransaction();
break;
default:
throw new UnsupportedOperationException(type.toString());
}
// TODO don't support nested transaction(嵌套事务), should configurable in future
if (getCurrentTransaction().isPresent()) {
throw new UnsupportedOperationException("Cannot support nested transaction.");
}
ExecutorDataMap.getDataMap().put(TRANSACTION, result);
ExecutorDataMap.getDataMap().put(TRANSACTION_CONFIG, transactionConfig);
return result;
}
获取柔性事务配置:
public static Optional<SoftTransactionConfiguration> getCurrentTransactionConfiguration() {
Object transactionConfig = ExecutorDataMap.getDataMap().get(TRANSACTION_CONFIG);
return (null == transactionConfig)
? Optional.<SoftTransactionConfiguration>absent()
: Optional.of((SoftTransactionConfiguration) transactionConfig);
}
public static Optional<AbstractSoftTransaction> getCurrentTransaction() {
Object transaction = ExecutorDataMap.getDataMap().get(TRANSACTION);
return (null == transaction)
? Optional.<AbstractSoftTransaction>absent()
: Optional.of((AbstractSoftTransaction) transaction);
}
3 事务日志存储器
柔性事务执行过程中,会通过事务日志( TransactionLog ) 记录每条 SQL 执行状态:
SQL执行前,记录一条事务日志
SQL执行成功,移除对应的事务日志
通过实现事务日志存储器接口( TransactionLogStorage ),提供存储功能。有两个实现类:
1、 RdbTransactionLogStorage:关系型数据库存储柔性事务日志;
2、 MemoryTransactionLogStorage:内存存储柔性事务日志;
3.1 TransactionLogStorage
public interface TransactionLogStorage {
/**
* Save transaction log.
*
* @param transactionLog transaction log
*/
void add(TransactionLog transactionLog);
/**
* Remove transaction log.
*
* @param id transaction log id
*/
void remove(String id);
/**
* Find eligible transaction logs.
*
* <p>To be processed transaction logs: </p>
* <p>1. retry times less than max retry times.</p>
* <p>2. transaction log last retry timestamp interval early than last retry timestamp.</p>
*
* @param size size of fetch transaction log
* @param maxDeliveryTryTimes max delivery try times
* @param maxDeliveryTryDelayMillis max delivery try delay millis
* @return eligible transaction logs
*/
List<TransactionLog> findEligibleTransactionLogs(int size, int maxDeliveryTryTimes, long maxDeliveryTryDelayMillis);
/**
* Increase asynchronized delivery try times.
*
* @param id transaction log id
*/
void increaseAsyncDeliveryTryTimes(String id);
/**
* Process transaction logs.
*
* @param connection connection for business app
* @param transactionLog transaction log
* @param maxDeliveryTryTimes max delivery try times
* @return process success or not
*/
boolean processData(Connection connection, TransactionLog transactionLog, int maxDeliveryTryTimes);
}
注释的比较清晰了,翻一下:
TransactionLogStorage中几个重要接口在两个实现类中的实现:
* void add(TransactionLog):Rdb实现就是把事务日志TransactionLog 插入到transaction_log表中,Memory实现就是把事务日志保存到ConcurrentHashMap中;
* void remove(String id):Rdb实现就是从transaction_log表中删除事务日志,Memory实现从ConcurrentHashMap中删除事务日志;
* void increaseAsyncDeliveryTryTimes(String id):异步增加送达重试次数,即TransactionLog中的asyncDeliveryTryTimes+1;Rdb实现就是update transaction_log表中async_delivery_try_times字段加1;Memory实现就是TransactionLog中重新给asyncDeliveryTryTimes赋值new AtomicInteger(transactionLog.getAsyncDeliveryTryTimes()).incrementAndGet();
* findEligibleTransactionLogs(): 查询需要处理的事务日志,条件是:①异步处理次数async_delivery_try_times小于参数最大处里次数maxDeliveryTryTimes,②transaction_type是BestEffortsDelivery,③系统当前时间与事务日志的创建时间差要超过参数maxDeliveryTryDelayMillis,每次最多查询参数size条;Rdb实现通过sql从transaction_log表中查询,Memory实现遍历ConcurrentHashMap匹配符合条件的TransactionLog;
* boolean processData():Rdb实现执行TransactionLog中的sql,如果执行过程中抛出异常,那么调用increaseAsyncDeliveryTryTimes()增加送达重试次数并抛出异常,如果执行成功,删除事务日志,并返回true;Memory实现直接返回false(因为processData()的目的是执行TransactionLog中的sql,而Memory类型无法触及数据库,所以返回false)
3.2 RdbTransactionLogStorage 接口实现源码
public final class RdbTransactionLogStorage implements TransactionLogStorage {
private final DataSource dataSource;
@Override
public void add(final TransactionLog transactionLog) {
String sql = "INSERT INTO transaction_log (id, transaction_type, data_source, sql, parameters, creation_time) VALUES (?, ?, ?, ?, ?, ?);";
try (...
}
public void remove(final String id) {
String sql = "DELETE FROM transaction_log WHERE id=?;";
...
}
public List<TransactionLog> findEligibleTransactionLogs(final int size, final int maxDeliveryTryTimes, final long maxDeliveryTryDelayMillis) {
//最多去size条
List<TransactionLog> result = new ArrayList<>(size);
String sql = "SELECT id, transaction_type, data_source, sql, parameters, creation_time, async_delivery_try_times "
+ "FROM transaction_log WHERE async_delivery_try_times`<? AND transaction_type=? AND creation_time`<? LIMIT ?;";
try (Connection conn = dataSource.getConnection()) {
。。。。
}
public void increaseAsyncDeliveryTryTimes(final String id) {
// 更新处理次数+1
String sql = "UPDATE transaction_log SET async_delivery_try_times=async_delivery_try_times+1 WHERE id=?;";
...
}
public boolean processData(final Connection connection, final TransactionLog transactionLog, final int maxDeliveryTryTimes) {
try (
Connection conn = connection;
// 重试执行TransactionLog中的sql
PreparedStatement preparedStatement = conn.prepareStatement(transactionLog.getSql())) {
for (int parameterIndex = 0; parameterIndex < transactionLog.getParameters().size(); parameterIndex++) {
preparedStatement.setObject(parameterIndex + 1, transactionLog.getParameters().get(parameterIndex));
}
preparedStatement.executeUpdate();
} catch (final SQLException ex) {
//如果抛出异常,表示执行sql失败,那么把增加处理次数并把异常抛出去;
increaseAsyncDeliveryTryTimes(transactionLog.getId());
throw new TransactionCompensationException(ex);
}
// 如果没有抛出异常,表示执行sql成功,那么删除该事务日志;
remove(transactionLog.getId());
return true;
}
- 该方法会被最大努力送达型异步作业调用到
TransactionLog (transaction_log) 数据库表结构如下:
字段 | 名字 | 数据库类型 | 备注 |
---|---|---|---|
id | 事件编号 | VARCHAR(40) | EventBus 事件编号,非事务编号 |
transaction_type | 柔性事务类型 | VARCHAR(30) | |
data_source | 真实数据源名 | VARCHAR(255) | |
sql | 执行 SQL | TEXT | 已经改写过的 SQL |
parameters | 占位符参数 | TEXT | JSON 字符串存储 |
creation_time | 记录时间 | LONG | |
async_delivery_try_times | 已异步重试次数 | INT |
4. 最大努力送达型事务监听器
最大努力送达型事务监听器,BestEffortsDeliveryListener,负责记录事务日志、同步重试执行失败 SQL。
public final class BestEffortsDeliveryListener {
@Subscribe
@AllowConcurrentEvents
//从方法可知,只监听DML执行事件
public void listen(final DMLExecutionEvent event) {
//判断是否需要继续,判断逻辑为:事务存在,并且是BestEffortsDelivery类型事务
if (!isProcessContinuously()) {
return;
}
// 从柔性事务管理器中得到柔性事务配置
SoftTransactionConfiguration transactionConfig = SoftTransactionManager.getCurrentTransactionConfiguration().get();
//得到配置的柔性事务存储器
TransactionLogStorage transactionLogStorage = TransactionLogStorageFactory.createTransactionLogStorage(transactionConfig.buildTransactionLogDataSource());
//得到最大努力送达型事务
BEDSoftTransaction bedSoftTransaction = (BEDSoftTransaction) SoftTransactionManager.getCurrentTransaction().get();
// 根据事件类型做不同处理
switch (event.getEventExecutionType()) {
// 如果执行前事件,那么先保存事务日志;
case BEFORE_EXECUTE:
//TODO for batch SQL need split to 2-level records
transactionLogStorage.add(new TransactionLog(event.getId(), bedSoftTransaction.getTransactionId(), bedSoftTransaction.getTransactionType(),
event.getDataSource(), event.getSql(), event.getParameters(), System.currentTimeMillis(), 0));
return;
// 如果执行成功事件,那么删除事务日志;
case EXECUTE_SUCCESS:
transactionLogStorage.remove(event.getId());
return;
//执行失败,同步重试
case EXECUTE_FAILURE:
boolean deliverySuccess = false;
for (int i = 0; i < transactionConfig.getSyncMaxDeliveryTryTimes(); i++) {
//如果执行成功,那么返回,不需要再尝试
if (deliverySuccess) {
return;
}
boolean isNewConnection = false;
Connection conn = null;
PreparedStatement preparedStatement = null;
try {
// 获得数据库连接
conn = bedSoftTransaction.getConnection().getConnection(event.getDataSource(), SQLType.DML);
// 通过执行"select 1"判断conn是否是有效的数据库连接;如果不是有效的数据库连接,释放掉并重新获取一个数据库连接;
// 为啥呢?因为可能执行失败是数据库连接异常,所以再判断一次
if (!isValidConnection(conn)) {
bedSoftTransaction.getConnection().release(conn);
conn = bedSoftTransaction.getConnection().getConnection(event.getDataSource(), SQLType.DML);
isNewConnection = true;
}
preparedStatement = conn.prepareStatement(event.getSql());
//同步重试,
//TODO for batch event need split to 2-level records(对于批量事件需要解析成两层列表)
for (int parameterIndex = 0; parameterIndex < event.getParameters().size(); parameterIndex++) {
preparedStatement.setObject(parameterIndex + 1, event.getParameters().get(parameterIndex));
}
//因为只监控DML,所以调用executeUpdate()
preparedStatement.executeUpdate();
deliverySuccess = true;
//执行成功;根据id删除事务日志;
transactionLogStorage.remove(event.getId());
} catch (final SQLException ex) {
// 如果sql执行有异常,那么输出error日志
log.error(String.format("Delivery times %s error, max try times is %s", i + 1, transactionConfig.getSyncMaxDeliveryTryTimes()), ex);
} finally {
// 关闭链接
close(isNewConnection, conn, preparedStatement);
}
}
return;
default:
// 默认对于支持三种事件类型之外的,抛出异常
throw new UnsupportedOperationException(event.getEventExecutionType().toString());
}
}
private boolean isProcessContinuously() {
return SoftTransactionManager.getCurrentTransaction().isPresent()
&& SoftTransactionType.BestEffortsDelivery == SoftTransactionManager.getCurrentTransaction().get().getTransactionType();
}
BestEffortsDeliveryListener 通过 EventBus 实现监听 SQL 的执行。Sharding-JDBC 而是通过google-guava的EventBus发布事件。具体可以结合《SQL执行》来看。
QL执行前,插入事务日志
SQL执行成功,移除事务日志
SQL执行失败,根据柔性事务配置( SoftTransactionConfiguration )同步的事务送达的最大尝试次数( syncMaxDeliveryTryTimes )进行多次重试直到成功。
最后进行关闭链接close()
private void close(final boolean isNewConnection, final Connection conn, final PreparedStatement preparedStatement) {
if (null != preparedStatement) {
try {
preparedStatement.close();
} catch (final SQLException ex) {
log.error("PreparedStatement closed error:", ex);
}
}
if (isNewConnection && null != conn) {
try {
conn.close();
} catch (final SQLException ex) {
log.error("Connection closed error:", ex);
}
}
}
5 最大努力送达型异步作业
当最大努力送达型事务监听器( BestEffortsDeliveryListener )多次同步重试失败后,交给最大努力送达型异步作业进行多次异步重试,并且多次执行有固定间隔。
Sharding-JDBC 提供了两个最大努力送达型异步作业实现:
NestedBestEffortsDeliveryJob :内嵌的最大努力送达型异步作业
BestEffortsDeliveryJob :最大努力送达型异步作业
逻辑类似,只是前者无法实现高可用,可以在测试环境用。
5.1 BestEffortsDeliveryJob
核心源码在模块sharding-jdbc-transaction-async-job
中。该模块是一个独立异步处理模块,使用者决定是否需要启用,源码比较少。宝结构如下图所示:
Main方法的核心源码如下:
public static void main(final String[] args) throws Exception {
// CHECKSTYLE:ON
try (InputStreamReader inputStreamReader = new InputStreamReader(BestEffortsDeliveryJobMain.class.getResourceAsStream("/conf/config.yaml"), "UTF-8")) {
BestEffortsDeliveryConfiguration config = new Yaml(new Constructor(BestEffortsDeliveryConfiguration.class)).loadAs(inputStreamReader, BestEffortsDeliveryConfiguration.class);
new BestEffortsDeliveryJobFactory(config).init();
}
}
由源码可知,主配置文件是config.yaml;将该文件解析为BestEffortsDeliveryConfiguration,然后调用job工厂的配置初始化
config.yaml配置文件
#事务日志的数据源.
targetDataSource:
ds_0: !!org.apache.commons.dbcp.BasicDataSource
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/ds_0
username: root
password:
ds_1: !!org.apache.commons.dbcp.BasicDataSource
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/ds_1
username: root
password:
#事务日志的数据源.
transactionLogDataSource:
ds_trans: !!org.apache.commons.dbcp.BasicDataSource
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/trans_log
username: root
password:
zkConfig:
#注册中心的连接地址
connectionString: localhost:2181
#作业的命名空间
namespace: Best-Efforts-Delivery-Job
#注册中心的等待重试的间隔时间的初始值
baseSleepTimeMilliseconds: 1000
#注册中心的等待重试的间隔时间的最大值
maxSleepTimeMilliseconds: 3000
#注册中心的最大重试次数
maxRetries: 3
jobConfig:
#作业名称
name: bestEffortsDeliveryJob
#触发作业的cron表达式
cron: 0/5 * * * * ?
#每次作业获取的事务日志最大数量
transactionLogFetchDataCount: 100
#事务送达的最大尝试次数.
maxDeliveryTryTimes: 3
#执行送达事务的延迟毫秒数,早于此间隔时间的入库事务才会被作业执行
maxDeliveryTryDelayMillis: 60000
BestEffortsDeliveryJobFactory核心源码:
public final class BestEffortsDeliveryJobFactory {
//这个属性赋值通过有参构造方法进行赋值,是通过config.yaml配置的属性
private final BestEffortsDeliveryConfiguration bedConfig;
/**
* Main中调用该init()方法,
* Initialize best efforts delivery job.
*/
public void init() {
//根据config.yaml中配置的zkConfig节点,得到协调调度中心CoordinatorRegistryCenter
CoordinatorRegistryCenter regCenter = new ZookeeperRegistryCenter(createZookeeperConfiguration(bedConfig));
// 调度中心初始化
regCenter.init();
//构造elastic-job调度任务
JobScheduler jobScheduler = new JobScheduler(regCenter, createBedJobConfiguration(bedConfig));
jobScheduler.setField("bedConfig", bedConfig);
jobScheduler.setField("transactionLogStorage", TransactionLogStorageFactory.createTransactionLogStorage(new RdbTransactionLogDataSource(bedConfig.getDefaultTransactionLogDataSource())));
jobScheduler.init();
}
public ZookeeperConfiguration createZookeeperConfiguration(final BestEffortsDeliveryConfiguration bedConfig) {
AsyncSoftTransactionZookeeperConfiguration zkConfig = bedConfig.getZkConfig();
return new ZookeeperConfiguration(zkConfig.getConnectionString(), zkConfig.getNamespace(), zkConfig.getBaseSleepTimeMilliseconds(),
zkConfig.getMaxSleepTimeMilliseconds(), zkConfig.getMaxRetries());
}
//创建BestEffortsDeliveryJob配置
private JobConfiguration createBedJobConfiguration(final BestEffortsDeliveryConfiguration bedJobConfig) {
// 根据config.yaml中配置的jobConfig节点得到job配置信息,且指定job类型为BestEffortsDeliveryJob
JobConfiguration result = new JobConfiguration(bedJobConfig.getJobConfig().getName(), BestEffortsDeliveryJob.class, 1, bedJobConfig.getJobConfig().getCron());
result.setFetchDataCount(bedJobConfig.getJobConfig().getTransactionLogFetchDataCount());
result.setOverwrite(true);
return result;
}
}
JOB的代码
public class BestEffortsDeliveryJob extends AbstractIndividualThroughputDataFlowElasticJob<TransactionLog> {
@Setter
private BestEffortsDeliveryConfiguration bedConfig;
@Setter
private TransactionLogStorage transactionLogStorage;
@Override
public List<TransactionLog> fetchData(final JobExecutionMultipleShardingContext context) {
return transactionLogStorage.findEligibleTransactionLogs(context.getFetchDataCount(),
bedConfig.getJobConfig().getMaxDeliveryTryTimes(), bedConfig.getJobConfig().getMaxDeliveryTryDelayMillis());
}
@Override
public boolean processData(final JobExecutionMultipleShardingContext context, final TransactionLog data) {
try (
Connection conn = bedConfig.getTargetDataSource(data.getDataSource()).getConnection()) {
transactionLogStorage.processData(conn, data, bedConfig.getJobConfig().getMaxDeliveryTryTimes());
} catch (final SQLException | TransactionCompensationException ex) {
log.error(String.format("Async delivery times %s error, max try times is %s, exception is %s", data.getAsyncDeliveryTryTimes() + 1,
bedConfig.getJobConfig().getMaxDeliveryTryTimes(), ex.getMessage()));
return false;
}
return true;
}
@Override
public boolean isStreamingProcess() {
return false;
}
}
调用 #fetchData() 方法获取需要处理的事务日志 (TransactionLog),内部调用了 TransactionLogStorage#findEligibleTransactionLogs() 方法
调用 #processData() 方法处理事务日志,重试执行失败的 SQL,内部调用了 TransactionLogStorage#processData()
#fetchData() 和 #processData() 调用是 Elastic-Job 控制的。每一轮定时调度,每条事务日志只执行一次。当超过最大异步调用次数后,该条事务日志不再处理,所以生产使用时,最好增加下相应监控超过最大异步重试次数的事务日志。
参考:http://www.iocoder.cn/Sharding-JDBC/transaction-bed/
https://www.jianshu.com/p/0f1a938c9017
版权声明:本文不是「本站」原创文章,版权归原作者所有 | 原文地址: