像Mybatis、Hibernate这样的ORM框架,封装了JDBC的大部分操作,极大的简化了我们对数据库的操作。
在实际项目中,我们发现在一个事务中查询同样的语句两次的时候,第二次没有进行数据库查询,直接返回了结果,实际这种情况我们就可以称为缓存。
Mybatis的缓存级别
一级缓存
- MyBatis的一级查询缓存(也叫作本地缓存)是基于org.apache.ibatis.cache.impl.PerpetualCache 类的 HashMap本地缓存,其作用域是SqlSession,myBatis 默认一级查询缓存是开启状态,且不能关闭。
- 在同一个SqlSession中两次执行相同的 sql查询语句,第一次执行完毕后,会将查询结果写入到缓存中,第二次会从缓存中直接获取数据,而不再到数据库中进行查询,这样就减少了数据库的访问,从而提高查询效率。
- 基于PerpetualCache 的 HashMap本地缓存,其存储作用域为 Session,PerpetualCache 对象是在SqlSession中的Executor的localcache属性当中存放,当 Session flush 或 close 之后,该Session中的所有 Cache 就将清空。
二级缓存
-
二级缓存与一级缓存其机制相同,默认也是采用 PerpetualCache,HashMap存储,不同在于其存储作用域为 Mapper(Namespace),每个Mapper中有一个Cache对象,存放在Configration中,并且将其放进当前Mapper的所有MappedStatement当中,并且可自定义存储源,如 Ehcache。
-
Mapper级别缓存,定义在Mapper文件的
<cache>
标签并需要开启此缓存
用下面这张图描述一级缓存和二级缓存的关系。
CacheKey
在MyBatis 中,引入缓存的目的是为提高查询效率,降低数据库压力。既然 MyBatis 引入了缓存,那么大家思考过缓存中的 key 和 value 的值分别是什么吗?大家可能很容易能回答出 value 的内容,不就是 SQL 的查询结果吗。那 key 是什么呢?是字符串,还是其他什么对象?如果是字符串的话,那么大家首先能想到的是用 SQL 语句作为 key。但这是不对的,比如:
SELECT * FROM user where id > ?
id> 1 和 id > 10 查出来的结果可能是不同的,所以我们不能简单的使用 SQL 语句作为 key。从这里可以看出来,运行时参数将会影响查询结果,因此我们的 key 应该涵盖运行时参数。除此之外呢,如果进行分页查询也会导致查询结果不同,因此 key 也应该涵盖分页参数。综上,我们不能使用简单的 SQL 语句作为 key。应该考虑使用一种复合对象,能涵盖可影响查询结果的因子。在 MyBatis 中,这种复合对象就是 CacheKey。下面来看一下它的定义。
public class CacheKey implements Cloneable, Serializable {
private static final int DEFAULT_MULTIPLYER = 37;
private static final int DEFAULT_HASHCODE = 17;
// 乘子,默认为37
private final int multiplier;
// CacheKey 的 hashCode,综合了各种影响因子
private int hashcode;
// 校验和
private long checksum;
// 影响因子个数
private int count;
// 影响因子集合
private List<Object> updateList;
public CacheKey() {
this.hashcode = DEFAULT_HASHCODE;
this.multiplier = DEFAULT_MULTIPLYER;
this.count = 0;
this.updateList = new ArrayList<Object>();
}
/** 每当执行更新操作时,表示有新的影响因子参与计算
* 当不断有新的影响因子参与计算时,hashcode 和 checksum 将会变得愈发复杂和随机。这样可降低冲突率,使 CacheKey 可在缓存中更均匀的分布。
*/
public void update(Object object) {
int baseHashCode = object == null ? 1 : ArrayUtil.hashCode(object);
// 自增 count
count++;
// 计算校验和
checksum += baseHashCode;
// 更新 baseHashCode
baseHashCode *= count;
// 计算 hashCode
hashcode = multiplier * hashcode + baseHashCode;
// 保存影响因子
updateList.add(object);
}
/**
* CacheKey 最终要作为键存入 HashMap,因此它需要覆盖 equals 和 hashCode 方法
*/
public boolean equals(Object object) {
// 检测是否为同一个对象
if (this == object) {
return true;
}
// 检测 object 是否为 CacheKey
if (!(object instanceof CacheKey)) {
return false;
}
final CacheKey cacheKey = (CacheKey) object;
// 检测 hashCode 是否相等
if (hashcode != cacheKey.hashcode) {
return false;
}
// 检测校验和是否相同
if (checksum != cacheKey.checksum) {
return false;
}
// 检测 coutn 是否相同
if (count != cacheKey.count) {
return false;
}
// 如果上面的检测都通过了,下面分别对每个影响因子进行比较
for (int i = 0; i < updateList.size(); i++) {
Object thisObject = updateList.get(i);
Object thatObject = cacheKey.updateList.get(i);
if (!ArrayUtil.equals(thisObject, thatObject)) {
return false;
}
}
return true;
}
public int hashCode() {
// 返回 hashcode 变量
return hashcode;
}
}
当不断有新的影响因子参与计算时,hashcode 和 checksum 将会变得愈发复杂和随机。这样可降低冲突率,使 CacheKey 可在缓存中更均匀的分布。CacheKey 最终要作为键存入 HashMap,因此它需要覆盖 equals 和 hashCode 方法。
一级缓存源码解析
一级缓存的测试
同一个session查询
public static void main(String[] args) {
SqlSession session = sqlSessionFactory.openSession();
try {
Blog blog = (Blog)session.selectOne("queryById",1);
Blog blog2 = (Blog)session.selectOne("queryById",1);
} finally {
session.close();
}
}
结论:只有一个DB查询
两个session分别查询
public static void main(String[] args) {
SqlSession session = sqlSessionFactory.openSession();
SqlSession session1 = sqlSessionFactory.openSession();
try {
Blog blog = (Blog)session.selectOne("queryById",17);
Blog blog2 = (Blog)session1.selectOne("queryById",17);
} finally {
session.close();
}
}
结论:进行了两次DB查询
同一个session,进行update之后再次查询
public static void main(String[] args) {
SqlSession session = sqlSessionFactory.openSession();
try {
Blog blog = (Blog)session.selectOne("queryById",17);
blog.setName("llll");
session.update("updateBlog",blog);
Blog blog2 = (Blog)session.selectOne("queryById",17);
} finally {
session.close();
}
}
结论:进行了两次DB查询
总结:在一级缓存中,同一个SqlSession下,查询语句相同的SQL会被缓存,如果执行增删改操作之后,该缓存就会被删除
创建缓存对象PerpetualCache
我们来回顾一下创建SqlSession的过程
SqlSession session = sessionFactory.openSession();
public SqlSession openSession() {
return this.openSessionFromDataSource(this.configuration.getDefaultExecutorType(), (TransactionIsolationLevel)null, false);
}
private SqlSession openSessionFromDataSource(ExecutorType execType, TransactionIsolationLevel level, boolean autoCommit) {
Transaction tx = null;
DefaultSqlSession var8;
try {
Environment environment = this.configuration.getEnvironment();
TransactionFactory transactionFactory = this.getTransactionFactoryFromEnvironment(environment);
tx = transactionFactory.newTransaction(environment.getDataSource(), level, autoCommit);
//创建SQL执行器
Executor executor = this.configuration.newExecutor(tx, execType);
var8 = new DefaultSqlSession(this.configuration, executor, autoCommit);
} catch (Exception var12) {
this.closeTransaction(tx);
throw ExceptionFactory.wrapException("Error opening session. Cause: " + var12, var12);
} finally {
ErrorContext.instance().reset();
}
return var8;
}
public Executor newExecutor(Transaction transaction, ExecutorType executorType) {
executorType = executorType == null ? this.defaultExecutorType : executorType;
executorType = executorType == null ? ExecutorType.SIMPLE : executorType;
Object executor;
if (ExecutorType.BATCH == executorType) {
executor = new BatchExecutor(this, transaction);
} else if (ExecutorType.REUSE == executorType) {
executor = new ReuseExecutor(this, transaction);
} else {
//默认创建SimpleExecutor
executor = new SimpleExecutor(this, transaction);
}
if (this.cacheEnabled) {
//开启二级缓存就会用CachingExecutor装饰SimpleExecutor
executor = new CachingExecutor((Executor)executor);
}
Executor executor = (Executor)this.interceptorChain.pluginAll(executor);
return executor;
}
public SimpleExecutor(Configuration configuration, Transaction transaction) {
super(configuration, transaction);
}
protected BaseExecutor(Configuration configuration, Transaction transaction) {
this.transaction = transaction;
this.deferredLoads = new ConcurrentLinkedQueue();
//创建一个缓存对象,PerpetualCache并不是线程安全的
//但SqlSession和Executor对象在通常情况下只能有一个线程访问,而且访问完成之后马上销毁。也就是session.close();
this.localCache = new PerpetualCache("LocalCache");
this.localOutputParameterCache = new PerpetualCache("LocalOutputParameterCache");
this.closed = false;
this.configuration = configuration;
this.wrapper = this;
}
我只是简单的贴了代码,大家可以看我之前的博客,我们可以看到DefaultSqlSession中有SimpleExecutor对象,SimpleExecutor对象中有一个PerpetualCache,一级缓存的数据就是存储在PerpetualCache对象中,SqlSession关闭的时候会清空PerpetualCache
一级缓存实现
再来看BaseExecutor中的query方法是怎么实现一级缓存的,executor默认实现为CachingExecutor
CachingExecutor
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameter);
//利用sql和执行的参数生成一个key,如果同一sql不同的执行参数的话,将会生成不同的key
CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql);
return query(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
@Override
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
throws SQLException {
// 这里是二级缓存的查询,我们暂且不看
Cache cache = ms.getCache();
if (cache != null) {
flushCacheIfRequired(ms);
if (ms.isUseCache() && resultHandler == null) {
ensureNoOutParams(ms, parameterObject, boundSql);
@SuppressWarnings("unchecked")
List<E> list = (List<E>) tcm.getObject(cache, key);
if (list == null) {
list = delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
tcm.putObject(cache, key, list); // issue #578 and #116
}
return list;
}
}
// 直接来到这里
// 实现为BaseExecutor.query()
return delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
如上,在访问一级缓存之前,MyBatis 首先会调用 createCacheKey 方法创建 CacheKey。下面我们来看一下 createCacheKey 方法的逻辑:
public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {
if (closed) {
throw new ExecutorException("Executor was closed.");
}
// 创建 CacheKey 对象
CacheKey cacheKey = new CacheKey();
// 将 MappedStatement 的 id 作为影响因子进行计算
cacheKey.update(ms.getId());
// RowBounds 用于分页查询,下面将它的两个字段作为影响因子进行计算
cacheKey.update(rowBounds.getOffset());
cacheKey.update(rowBounds.getLimit());
// 获取 sql 语句,并进行计算
cacheKey.update(boundSql.getSql());
List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
TypeHandlerRegistry typeHandlerRegistry = ms.getConfiguration().getTypeHandlerRegistry();
for (ParameterMapping parameterMapping : parameterMappings) {
if (parameterMapping.getMode() != ParameterMode.OUT) {
// 运行时参数
Object value;
// 当前大段代码用于获取 SQL 中的占位符 #{xxx} 对应的运行时参数,
// 前文有类似分析,这里忽略了
String propertyName = parameterMapping.getProperty();
if (boundSql.hasAdditionalParameter(propertyName)) {
value = boundSql.getAdditionalParameter(propertyName);
} else if (parameterObject == null) {
value = null;
} else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
value = parameterObject;
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
value = metaObject.getValue(propertyName);
}
// 让运行时参数参与计算
cacheKey.update(value);
}
}
if (configuration.getEnvironment() != null) {
// 获取 Environment id 遍历,并让其参与计算
cacheKey.update(configuration.getEnvironment().getId());
}
return cacheKey;
}
如上,在计算 CacheKey 的过程中,有很多影响因子参与了计算。比如 MappedStatement 的 id 字段,SQL 语句,分页参数,运行时变量,Environment 的 id 字段等。通过让这些影响因子参与计算,可以很好的区分不同查询请求。所以,我们可以简单的把 CacheKey 看做是一个查询请求的 id。有了 CacheKey,我们就可以使用它读写缓存了。
SimpleExecutor(BaseExecutor)
@SuppressWarnings("unchecked")
@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
if (closed) {
throw new ExecutorException("Executor was closed.");
}
if (queryStack == 0 && ms.isFlushCacheRequired()) {
clearLocalCache();
}
List<E> list;
try {
queryStack++;
// 看这里,先从localCache中获取对应CacheKey的结果值
list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;
if (list != null) {
handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
} else {
// 如果缓存中没有值,则从DB中查询
list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
} finally {
queryStack--;
}
if (queryStack == 0) {
for (DeferredLoad deferredLoad : deferredLoads) {
deferredLoad.load();
}
deferredLoads.clear();
if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
clearLocalCache();
}
}
return list;
}
BaseExecutor.queryFromDatabase()
我们先来看下这种缓存中没有值的情况,看一下查询后的结果是如何被放置到缓存中的
private <E> List<E> queryFromDatabase(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
List<E> list;
localCache.putObject(key, EXECUTION_PLACEHOLDER);
try {
// 1.执行查询,获取list
list = doQuery(ms, parameter, rowBounds, resultHandler, boundSql);
} finally {
localCache.removeObject(key);
}
// 2.将查询后的结果放置到localCache中,key就是我们刚才封装的CacheKey,value就是从DB中查询到的list
localCache.putObject(key, list);
if (ms.getStatementType() == StatementType.CALLABLE) {
localOutputParameterCache.putObject(key, parameter);
}
return list;
}
我们来看看 localCache.putObject(key, list);
PerpetualCache
PerpetualCache 是一级缓存使用的缓存类,内部使用了 HashMap 实现缓存功能。它的源码如下:
public class PerpetualCache implements Cache {
private final String id;
private Map<Object, Object> cache = new HashMap<Object, Object>();
public PerpetualCache(String id) {
this.id = id;
}
@Override
public String getId() {
return id;
}
@Override
public int getSize() {
return cache.size();
}
@Override
public void putObject(Object key, Object value) {
// 存储键值对到 HashMap
cache.put(key, value);
}
@Override
public Object getObject(Object key) {
// 查找缓存项
return cache.get(key);
}
@Override
public Object removeObject(Object key) {
// 移除缓存项
return cache.remove(key);
}
@Override
public void clear() {
cache.clear();
}
// 省略部分代码
}
总结:可以看到localCache本质上就是一个Map,key为我们的CacheKey,value为我们的结果值,是不是很简单,只是封装了一个Map而已。
清除缓存
SqlSession.update()
当我们进行更新操作时,会执行如下代码
@Override
public int update(MappedStatement ms, Object parameter) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing an update").object(ms.getId());
if (closed) {
throw new ExecutorException("Executor was closed.");
}
//每次执行update/insert/delete语句时都会清除一级缓存。
clearLocalCache();
// 然后再进行更新操作
return doUpdate(ms, parameter);
}
@Override
public void clearLocalCache() {
if (!closed) {
// 直接将Map清空
localCache.clear();
localOutputParameterCache.clear();
}
}
session.close();
//DefaultSqlSession
public void close() {
try {
this.executor.close(this.isCommitOrRollbackRequired(false));
this.closeCursors();
this.dirty = false;
} finally {
ErrorContext.instance().reset();
}
}
//BaseExecutor
public void close(boolean forceRollback) {
try {
try {
this.rollback(forceRollback);
} finally {
if (this.transaction != null) {
this.transaction.close();
}
}
} catch (SQLException var11) {
log.warn("Unexpected exception on closing transaction. Cause: " + var11);
} finally {
this.transaction = null;
this.deferredLoads = null;
this.localCache = null;
this.localOutputParameterCache = null;
this.closed = true;
}
}
public void rollback(boolean required) throws SQLException {
if (!this.closed) {
try {
this.clearLocalCache();
this.flushStatements(true);
} finally {
if (required) {
this.transaction.rollback();
}
}
}
}
public void clearLocalCache() {
if (!this.closed) {
// 直接将Map清空
this.localCache.clear();
this.localOutputParameterCache.clear();
}
}
当关闭SqlSession时,也会清楚SqlSession中的一级缓存
总结
1、 一级缓存只在同一个SqlSession中共享数据;
2、 在同一个SqlSession对象执行相同的sql并参数也要相同,缓存才有效;
3、 如果在SqlSession中执行update/insert/detete语句或者**session.close();**的话,SqlSession中的executor对象会将一级缓存清空;
二级缓存源码解析
二级缓存构建在一级缓存之上,在收到查询请求时,MyBatis 首先会查询二级缓存。若二级缓存未命中,再去查询一级缓存。与一级缓存不同,二级缓存和具体的命名空间绑定,一个Mapper中有一个Cache,相同Mapper中的MappedStatement公用一个Cache,一级缓存则是和 SqlSession 绑定。一级缓存不存在并发问题二级缓存可在多个命名空间间共享,这种情况下,会存在并发问题,比喻多个不同的SqlSession 会同时执行相同的SQL语句,参数也相同,那么CacheKey是相同的,就会造成多个线程并发访问相同CacheKey的值,下面首先来看一下访问二级缓存的逻辑。
二级缓存的测试
二级缓存需要在Mapper.xml中配置
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="mybatis.BlogMapper">
<select id="queryById" parameterType="int" resultType="jdbc.Blog">
select * from blog where id = #{id}
</select>
<update id="updateBlog" parameterType="jdbc.Blog">
update Blog set name = #{name},url = #{url} where id=#{id}
</update>
<!-- 开启BlogMapper二级缓存 -->
<cache/>
</mapper>
不同的session进行相同的查询
public static void main(String[] args) {
SqlSession session = sqlSessionFactory.openSession();
SqlSession session1 = sqlSessionFactory.openSession();
try {
Blog blog = (Blog)session.selectOne("queryById",17);
Blog blog2 = (Blog)session1.selectOne("queryById",17);
} finally {
session.close();
}
}
结论:执行两次DB查询
第一个session查询完成之后,手动提交,在执行第二个session查询
public static void main(String[] args) {
SqlSession session = sqlSessionFactory.openSession();
SqlSession session1 = sqlSessionFactory.openSession();
try {
Blog blog = (Blog)session.selectOne("queryById",17);
session.commit();
Blog blog2 = (Blog)session1.selectOne("queryById",17);
} finally {
session.close();
}
}
结论:执行一次DB查询
第一个session查询完成之后,手动关闭,在执行第二个session查询
public static void main(String[] args) {
SqlSession session = sqlSessionFactory.openSession();
SqlSession session1 = sqlSessionFactory.openSession();
try {
Blog blog = (Blog)session.selectOne("queryById",17);
session.close();
Blog blog2 = (Blog)session1.selectOne("queryById",17);
} finally {
session.close();
}
}
结论:执行一次DB查询
总结:二级缓存的生效必须在session提交或关闭之后才会生效
标签<cache/>
的解析
按照之前的对Mybatis的分析,对blog.xml的解析工作主要交给XMLConfigBuilder.parse()方法来实现的
1 // XMLConfigBuilder.parse()
2 public Configuration parse() {
3 if (parsed) {
4 throw new BuilderException("Each XMLConfigBuilder can only be used once.");
5 }
6 parsed = true;
7 parseConfiguration(parser.evalNode("/configuration"));// 在这里
8 return configuration;
9 }
10
11 // parseConfiguration()
12 // 既然是在blog.xml中添加的,那么我们就直接看关于mappers标签的解析
13 private void parseConfiguration(XNode root) {
14 try {
15 Properties settings = settingsAsPropertiess(root.evalNode("settings"));
16 propertiesElement(root.evalNode("properties"));
17 loadCustomVfs(settings);
18 typeAliasesElement(root.evalNode("typeAliases"));
19 pluginElement(root.evalNode("plugins"));
20 objectFactoryElement(root.evalNode("objectFactory"));
21 objectWrapperFactoryElement(root.evalNode("objectWrapperFactory"));
22 reflectionFactoryElement(root.evalNode("reflectionFactory"));
23 settingsElement(settings);
24 // read it after objectFactory and objectWrapperFactory issue #631
25 environmentsElement(root.evalNode("environments"));
26 databaseIdProviderElement(root.evalNode("databaseIdProvider"));
27 typeHandlerElement(root.evalNode("typeHandlers"));
28 // 就是这里
29 mapperElement(root.evalNode("mappers"));
30 } catch (Exception e) {
31 throw new BuilderException("Error parsing SQL Mapper Configuration. Cause: " + e, e);
32 }
33 }
34
35
36 // mapperElement()
37 private void mapperElement(XNode parent) throws Exception {
38 if (parent != null) {
39 for (XNode child : parent.getChildren()) {
40 if ("package".equals(child.getName())) {
41 String mapperPackage = child.getStringAttribute("name");
42 configuration.addMappers(mapperPackage);
43 } else {
44 String resource = child.getStringAttribute("resource");
45 String url = child.getStringAttribute("url");
46 String mapperClass = child.getStringAttribute("class");
47 // 按照我们本例的配置,则直接走该if判断
48 if (resource != null && url == null && mapperClass == null) {
49 ErrorContext.instance().resource(resource);
50 InputStream inputStream = Resources.getResourceAsStream(resource);
51 XMLMapperBuilder mapperParser = new XMLMapperBuilder(inputStream, configuration, resource, configuration.getSqlFragments());
52 // 生成XMLMapperBuilder,并执行其parse方法
53 mapperParser.parse();
54 } else if (resource == null && url != null && mapperClass == null) {
55 ErrorContext.instance().resource(url);
56 InputStream inputStream = Resources.getUrlAsStream(url);
57 XMLMapperBuilder mapperParser = new XMLMapperBuilder(inputStream, configuration, url, configuration.getSqlFragments());
58 mapperParser.parse();
59 } else if (resource == null && url == null && mapperClass != null) {
60 Class<?> mapperInterface = Resources.classForName(mapperClass);
61 configuration.addMapper(mapperInterface);
62 } else {
63 throw new BuilderException("A mapper element may only specify a url, resource or class, but not more than one.");
64 }
65 }
66 }
67 }
68 }
View Code
我们来看看解析Mapper.xml
// XMLMapperBuilder.parse()
public void parse() {
if (!configuration.isResourceLoaded(resource)) {
// 解析mapper属性
configurationElement(parser.evalNode("/mapper"));
configuration.addLoadedResource(resource);
bindMapperForNamespace();
}
parsePendingResultMaps();
parsePendingChacheRefs();
parsePendingStatements();
}
// configurationElement()
private void configurationElement(XNode context) {
try {
String namespace = context.getStringAttribute("namespace");
if (namespace == null || namespace.equals("")) {
throw new BuilderException("Mapper's namespace cannot be empty");
}
builderAssistant.setCurrentNamespace(namespace);
cacheRefElement(context.evalNode("cache-ref"));
// 最终在这里看到了关于cache属性的处理
cacheElement(context.evalNode("cache"));
parameterMapElement(context.evalNodes("/mapper/parameterMap"));
resultMapElements(context.evalNodes("/mapper/resultMap"));
sqlElement(context.evalNodes("/mapper/sql"));
// 这里会将生成的Cache包装到对应的MappedStatement
buildStatementFromContext(context.evalNodes("select|insert|update|delete"));
} catch (Exception e) {
throw new BuilderException("Error parsing Mapper XML. Cause: " + e, e);
}
}
// cacheElement()
private void cacheElement(XNode context) throws Exception {
if (context != null) {
//解析<cache/>标签的type属性,这里我们可以自定义cache的实现类,比如redisCache,如果没有自定义,这里使用和一级缓存相同的PERPETUAL
String type = context.getStringAttribute("type", "PERPETUAL");
Class<? extends Cache> typeClass = typeAliasRegistry.resolveAlias(type);
String eviction = context.getStringAttribute("eviction", "LRU");
Class<? extends Cache> evictionClass = typeAliasRegistry.resolveAlias(eviction);
Long flushInterval = context.getLongAttribute("flushInterval");
Integer size = context.getIntAttribute("size");
boolean readWrite = !context.getBooleanAttribute("readOnly", false);
boolean blocking = context.getBooleanAttribute("blocking", false);
Properties props = context.getChildrenAsProperties();
// 构建Cache对象
builderAssistant.useNewCache(typeClass, evictionClass, flushInterval, size, readWrite, blocking, props);
}
}
先来看看是如何构建Cache对象的
MapperBuilderAssistant.useNewCache()
public Cache useNewCache(Class<? extends Cache> typeClass,
Class<? extends Cache> evictionClass,
Long flushInterval,
Integer size,
boolean readWrite,
boolean blocking,
Properties props) {
// 1.生成Cache对象
Cache cache = new CacheBuilder(currentNamespace)
//这里如果我们定义了<cache/>中的type,就使用自定义的Cache,否则使用和一级缓存相同的PerpetualCache
.implementation(valueOrDefault(typeClass, PerpetualCache.class))
.addDecorator(valueOrDefault(evictionClass, LruCache.class))
.clearInterval(flushInterval)
.size(size)
.readWrite(readWrite)
.blocking(blocking)
.properties(props)
.build();
// 2.添加到Configuration中
configuration.addCache(cache);
// 3.并将cache赋值给MapperBuilderAssistant.currentCache
currentCache = cache;
return cache;
}
我们看到一个Mapper.xml只会解析一次
buildStatementFromContext(context.evalNodes("select|insert|update|delete"));将Cache包装到MappedStatement
// buildStatementFromContext()
private void buildStatementFromContext(List<XNode> list) {
if (configuration.getDatabaseId() != null) {
buildStatementFromContext(list, configuration.getDatabaseId());
}
buildStatementFromContext(list, null);
}
//buildStatementFromContext()
private void buildStatementFromContext(List<XNode> list, String requiredDatabaseId) {
for (XNode context : list) {
final XMLStatementBuilder statementParser = new XMLStatementBuilder(configuration, builderAssistant, context, requiredDatabaseId);
try {
// 每一条执行语句转换成一个MappedStatement
statementParser.parseStatementNode();
} catch (IncompleteElementException e) {
configuration.addIncompleteStatement(statementParser);
}
}
}
// XMLStatementBuilder.parseStatementNode();
public void parseStatementNode() {
String id = context.getStringAttribute("id");
String databaseId = context.getStringAttribute("databaseId");
...
Integer fetchSize = context.getIntAttribute("fetchSize");
Integer timeout = context.getIntAttribute("timeout");
String parameterMap = context.getStringAttribute("parameterMap");
String parameterType = context.getStringAttribute("parameterType");
Class<?> parameterTypeClass = resolveClass(parameterType);
String resultMap = context.getStringAttribute("resultMap");
String resultType = context.getStringAttribute("resultType");
String lang = context.getStringAttribute("lang");
LanguageDriver langDriver = getLanguageDriver(lang);
...
// 创建MappedStatement对象
builderAssistant.addMappedStatement(id, sqlSource, statementType, sqlCommandType,
fetchSize, timeout, parameterMap, parameterTypeClass, resultMap, resultTypeClass,
resultSetTypeEnum, flushCache, useCache, resultOrdered,
keyGenerator, keyProperty, keyColumn, databaseId, langDriver, resultSets);
}
// builderAssistant.addMappedStatement()
public MappedStatement addMappedStatement(
String id,
...) {
if (unresolvedCacheRef) {
throw new IncompleteElementException("Cache-ref not yet resolved");
}
id = applyCurrentNamespace(id, false);
boolean isSelect = sqlCommandType == SqlCommandType.SELECT;
//创建MappedStatement对象
MappedStatement.Builder statementBuilder = new MappedStatement.Builder(configuration, id, sqlSource, sqlCommandType)
...
.flushCacheRequired(valueOrDefault(flushCache, !isSelect))
.useCache(valueOrDefault(useCache, isSelect))
.cache(currentCache);// 在这里将之前生成的Cache封装到MappedStatement
ParameterMap statementParameterMap = getStatementParameterMap(parameterMap, parameterType, id);
if (statementParameterMap != null) {
statementBuilder.parameterMap(statementParameterMap);
}
MappedStatement statement = statementBuilder.build();
configuration.addMappedStatement(statement);
return statement;
}
我们看到将Mapper中创建的Cache对象,加入到了每个MappedStatement对象中,也就是同一个Mapper中所有的MappedStatement 中的cache属性引用是同一个
有关于
查询源码分析
CachingExecutor
// CachingExecutor
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameterObject);
// 创建 CacheKey
CacheKey key = createCacheKey(ms, parameterObject, rowBounds, boundSql);
return query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
throws SQLException {
// 从 MappedStatement 中获取 Cache,注意这里的 Cache 是从MappedStatement中获取的
// 也就是我们上面解析Mapper中<cache/>标签中创建的,它保存在Configration中
// 我们在上面解析blog.xml时分析过每一个MappedStatement都有一个Cache对象,就是这里
Cache cache = ms.getCache();
// 如果配置文件中没有配置 <cache>,则 cache 为空
if (cache != null) {
//如果需要刷新缓存的话就刷新:flushCache="true"
flushCacheIfRequired(ms);
if (ms.isUseCache() && resultHandler == null) {
ensureNoOutParams(ms, boundSql);
// 访问二级缓存
List<E> list = (List<E>) tcm.getObject(cache, key);
// 缓存未命中
if (list == null) {
// 如果没有值,则执行查询,这个查询实际也是先走一级缓存查询,一级缓存也没有的话,则进行DB查询
list = delegate.<E>query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
// 缓存查询结果
tcm.putObject(cache, key, list);
}
return list;
}
}
return delegate.<E>query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
如果设置了flushCache="true",则每次查询都会刷新缓存
<!-- 执行此语句清空缓存 -->
<select id="getAll" resultType="entity.TDemo" useCache="true" flushCache="true" >
select * from t_demo
</select>
如上,注意二级缓存是从 MappedStatement 中获取的。由于 MappedStatement 存在于全局配置中,可以多个 CachingExecutor 获取到,这样就会出现线程安全问题。除此之外,若不加以控制,多个事务共用一个缓存实例,会导致脏读问题。至于脏读问题,需要借助其他类来处理,也就是上面代码中 tcm 变量对应的类型。下面分析一下。
TransactionalCacheManager
/** 事务缓存管理器 */
public class TransactionalCacheManager {
// Cache 与 TransactionalCache 的映射关系表
private final Map<Cache, TransactionalCache> transactionalCaches = new HashMap<Cache, TransactionalCache>();
public void clear(Cache cache) {
// 获取 TransactionalCache 对象,并调用该对象的 clear 方法,下同
getTransactionalCache(cache).clear();
}
public Object getObject(Cache cache, CacheKey key) {
// 直接从TransactionalCache中获取缓存
return getTransactionalCache(cache).getObject(key);
}
public void putObject(Cache cache, CacheKey key, Object value) {
// 直接存入TransactionalCache的缓存中
getTransactionalCache(cache).putObject(key, value);
}
public void commit() {
for (TransactionalCache txCache : transactionalCaches.values()) {
txCache.commit();
}
}
public void rollback() {
for (TransactionalCache txCache : transactionalCaches.values()) {
txCache.rollback();
}
}
private TransactionalCache getTransactionalCache(Cache cache) {
// 从映射表中获取 TransactionalCache
TransactionalCache txCache = transactionalCaches.get(cache);
if (txCache == null) {
// TransactionalCache 也是一种装饰类,为 Cache 增加事务功能
// 创建一个新的TransactionalCache,并将真正的Cache对象存进去
txCache = new TransactionalCache(cache);
transactionalCaches.put(cache, txCache);
}
return txCache;
}
}
TransactionalCacheManager 内部维护了 Cache 实例与 TransactionalCache 实例间的映射关系,该类也仅负责维护两者的映射关系,真正做事的还是 TransactionalCache。TransactionalCache 是一种缓存装饰器,可以为 Cache 实例增加事务功能。我在之前提到的脏读问题正是由该类进行处理的。下面分析一下该类的逻辑。
TransactionalCache
public class TransactionalCache implements Cache {
//真正的缓存对象,和上面的Map<Cache, TransactionalCache>中的Cache是同一个
private final Cache delegate;
private boolean clearOnCommit;
// 在事务被提交前,所有从数据库中查询的结果将缓存在此集合中
private final Map<Object, Object> entriesToAddOnCommit;
// 在事务被提交前,当缓存未命中时,CacheKey 将会被存储在此集合中
private final Set<Object> entriesMissedInCache;
@Override
public Object getObject(Object key) {
// 查询的时候是直接从delegate中去查询的,也就是从真正的缓存对象中查询
Object object = delegate.getObject(key);
if (object == null) {
// 缓存未命中,则将 key 存入到 entriesMissedInCache 中
entriesMissedInCache.add(key);
}
if (clearOnCommit) {
return null;
} else {
return object;
}
}
@Override
public void putObject(Object key, Object object) {
// 将键值对存入到 entriesToAddOnCommit 这个Map中中,而非真实的缓存对象 delegate 中
entriesToAddOnCommit.put(key, object);
}
@Override
public Object removeObject(Object key) {
return null;
}
@Override
public void clear() {
clearOnCommit = true;
// 清空 entriesToAddOnCommit,但不清空 delegate 缓存
entriesToAddOnCommit.clear();
}
public void commit() {
// 根据 clearOnCommit 的值决定是否清空 delegate
if (clearOnCommit) {
delegate.clear();
}
// 刷新未缓存的结果到 delegate 缓存中
flushPendingEntries();
// 重置 entriesToAddOnCommit 和 entriesMissedInCache
reset();
}
public void rollback() {
unlockMissedEntries();
reset();
}
private void reset() {
clearOnCommit = false;
// 清空集合
entriesToAddOnCommit.clear();
entriesMissedInCache.clear();
}
private void flushPendingEntries() {
for (Map.Entry<Object, Object> entry : entriesToAddOnCommit.entrySet()) {
// 将 entriesToAddOnCommit 中的内容转存到 delegate 中
delegate.putObject(entry.getKey(), entry.getValue());
}
for (Object entry : entriesMissedInCache) {
if (!entriesToAddOnCommit.containsKey(entry)) {
// 存入空值
delegate.putObject(entry, null);
}
}
}
private void unlockMissedEntries() {
for (Object entry : entriesMissedInCache) {
try {
// 调用 removeObject 进行解锁
delegate.removeObject(entry);
} catch (Exception e) {
log.warn("...");
}
}
}
}
存储二级缓存对象的时候是放到了TransactionalCache.entriesToAddOnCommit这个map中,但是每次查询的时候是直接从TransactionalCache.delegate中去查询的,所以这个二级缓存查询数据库后,设置缓存值是没有立刻生效的,主要是因为直接存到 delegate 会导致脏数据问题。
为何只有SqlSession提交或关闭之后二级缓存才会生效?
那我们来看下SqlSession.commit()方法做了什么
SqlSession
@Override
public void commit(boolean force) {
try {
// 主要是这句
executor.commit(isCommitOrRollbackRequired(force));
dirty = false;
} catch (Exception e) {
throw ExceptionFactory.wrapException("Error committing transaction. Cause: " + e, e);
} finally {
ErrorContext.instance().reset();
}
}
// CachingExecutor.commit()
@Override
public void commit(boolean required) throws SQLException {
delegate.commit(required);
tcm.commit();// 在这里
}
// TransactionalCacheManager.commit()
public void commit() {
for (TransactionalCache txCache : transactionalCaches.values()) {
txCache.commit();// 在这里
}
}
// TransactionalCache.commit()
public void commit() {
if (clearOnCommit) {
delegate.clear();
}
flushPendingEntries();//这一句
reset();
}
// TransactionalCache.flushPendingEntries()
private void flushPendingEntries() {
for (Map.Entry<Object, Object> entry : entriesToAddOnCommit.entrySet()) {
// 在这里真正的将entriesToAddOnCommit的对象逐个添加到delegate中,只有这时,二级缓存才真正的生效
delegate.putObject(entry.getKey(), entry.getValue());
}
for (Object entry : entriesMissedInCache) {
if (!entriesToAddOnCommit.containsKey(entry)) {
delegate.putObject(entry, null);
}
}
}
如果从数据库查询到的数据直接存到 delegate 会导致脏数据问题。下面通过一张图演示一下脏数据问题发生的过程,假设两个线程开启两个不同的事务,它们的执行过程如下:
如上图,时刻2,事务 A 对记录 A 进行了更新。时刻3,事务 A 从数据库查询记录 A,并将记录 A 写入缓存中。时刻4,事务 B 查询记录 A,由于缓存中存在记录 A,事务 B 直接从缓存中取数据。这个时候,脏数据问题就发生了。事务 B 在事务 A 未提交情况下,读取到了事务 A 所修改的记录。为了解决这个问题,我们可以为每个事务引入一个独立的缓存。查询数据时,仍从 delegate 缓存(以下统称为共享缓存)中查询。若缓存未命中,则查询数据库。存储查询结果时,并不直接存储查询结果到共享缓存中,而是先存储到事务缓存中,也就是 entriesToAddOnCommit 集合。当事务提交时,再将事务缓存中的缓存项转存到共享缓存中。这样,事务 B 只能在事务 A 提交后,才能读取到事务 A 所做的修改,解决了脏读问题。
二级缓存的刷新
我们来看看SqlSession的更新操作
public int update(String statement, Object parameter) {
int var4;
try {
this.dirty = true;
MappedStatement ms = this.configuration.getMappedStatement(statement);
var4 = this.executor.update(ms, this.wrapCollection(parameter));
} catch (Exception var8) {
throw ExceptionFactory.wrapException("Error updating database. Cause: " + var8, var8);
} finally {
ErrorContext.instance().reset();
}
return var4;
}
public int update(MappedStatement ms, Object parameterObject) throws SQLException {
this.flushCacheIfRequired(ms);
return this.delegate.update(ms, parameterObject);
}
private void flushCacheIfRequired(MappedStatement ms) {
//获取MappedStatement对应的Cache,进行清空
Cache cache = ms.getCache();
//SQL需设置flushCache="true" 才会执行清空
if (cache != null && ms.isFlushCacheRequired()) {
this.tcm.clear(cache);
}
}
MyBatis二级缓存只适用于不常进行增、删、改的数据,比如国家行政区省市区街道数据。一但数据变更,MyBatis会清空缓存。因此二级缓存不适用于经常进行更新的数据。
使用redis存储二级缓存
通过上面代码分析,我们知道二级缓存默认和一级缓存都是使用的PerpetualCache存储结果,一级缓存只要SQLSession关闭就会清空,其内部使用HashMap实现,所以二级缓存无法实现分布式,并且服务器重启后就没有缓存了。此时就需要引入第三方缓存中间件,将缓存的值存到外部,如redis和ehcache
修改mapper.xml中的配置。
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd" >
<mapper namespace="com.tyb.saas.common.dal.dao.AreaDefaultMapper">
<!--
flushInterval(清空缓存的时间间隔): 单位毫秒,可以被设置为任意的正整数。
默认情况是不设置,也就是没有刷新间隔,缓存仅仅调用语句时刷新。
size(引用数目): 可以被设置为任意正整数,要记住你缓存的对象数目和你运行环境的可用内存资源数目。默认值是1024。
readOnly(只读):属性可以被设置为true或false。只读的缓存会给所有调用者返回缓存对象的相同实例。
因此这些对象不能被修改。这提供了很重要的性能优势。可读写的缓存会返回缓存对象的拷贝(通过序列化)。这会慢一些,但是安全,因此默认是false。
eviction(回收策略): 默认的是 LRU:
1.LRU – 最近最少使用的:移除最长时间不被使用的对象。
2.FIFO – 先进先出:按对象进入缓存的顺序来移除它们。
3.SOFT – 软引用:移除基于垃圾回收器状态和软引用规则的对象。
4.WEAK – 弱引用:更积极地移除基于垃圾收集器状态和弱引用规则的对象。
blocking(是否使用阻塞缓存): 默认为false,当指定为true时将采用BlockingCache进行封装,blocking,阻塞的意思,
使用BlockingCache会在查询缓存时锁住对应的Key,如果缓存命中了则会释放对应的锁,否则会在查询数据库以后再释放锁,
这样可以阻止并发情况下多个线程同时查询数据,详情可参考BlockingCache的源码。
type(缓存类):可指定使用的缓存类,mybatis默认使用HashMap进行缓存,这里引用第三方中间件进行缓存
-->
<cache type="org.mybatis.caches.redis.RedisCache" blocking="false"
flushInterval="0" readOnly="true" size="1024" eviction="FIFO"/>
<!--
useCache(是否使用缓存):默认true使用缓存
-->
<select id="find" parameterType="map" resultType="com.chenhao.model.User" useCache="true">
SELECT * FROM user
</select>
</mapper>
依然很简单, RedisCache 在保存缓存数据和获取缓存数据时,使用了Java的序列化和反序列化,因此需要保证被缓存的对象必须实现Serializable接口。
也可以自己实现cache
实现自己的cache
package com.chenhao.mybatis.cache;
import org.apache.ibatis.cache.Cache;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.ValueOperations;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* @author chenhao
* @date 2019/10/31.
*/
public class RedisCache implements Cache {
private final String id;
private static ValueOperations<String, Object> valueOs;
private static RedisTemplate<String, String> template;
public static void setValueOs(ValueOperations<String, Object> valueOs) {
RedisCache.valueOs = valueOs;
}
public static void setTemplate(RedisTemplate<String, String> template) {
RedisCache.template = template;
}
private final ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
public RedisCache(String id) {
if (id == null) {
throw new IllegalArgumentException("Cache instances require an ID");
}
this.id = id;
}
@Override
public String getId() {
return this.id;
}
@Override
public void putObject(Object key, Object value) {
valueOs.set(key.toString(), value, 10, TimeUnit.MINUTES);
}
@Override
public Object getObject(Object key) {
return valueOs.get(key.toString());
}
@Override
public Object removeObject(Object key) {
valueOs.set(key.toString(), "", 0, TimeUnit.MINUTES);
return key;
}
@Override
public void clear() {
template.getConnectionFactory().getConnection().flushDb();
}
@Override
public int getSize() {
return template.getConnectionFactory().getConnection().dbSize().intValue();
}
@Override
public ReadWriteLock getReadWriteLock() {
return this.readWriteLock;
}
}
Mapper中配置自己实现的Cache
<cache type="com.chenhao.mybatis.cache.RedisCache"/>