ReentrantReadWriteLock基于AQS实现读写锁的同步:
1、 利用共享模式实现读锁,独占模式实现写锁;
2、 支持公平和非公平,非公平的情况下可能会出现读锁阻塞写锁的场景;
3、 写锁阻塞写锁和读锁,读锁阻塞写锁;
4、 写锁可以降级为读锁,读锁不能升级为写锁,只能先release再lock;
5、 写锁支持condition条件;
6、 读写锁都支持超时/中断lock;
7、 适合读多写少的场景;
实现ReadWriteLock接口,用于返回读/写锁:
<span style="font-size:18px;">public interface ReadWriteLock {
/**
* Returns the lock used for reading.
*/
Lock readLock();
/**
* Returns the lock used for writing.
*/
Lock writeLock();
}</span>
看下内部类的AQS实现:
<span style="font-size:18px;">abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 6317671515068378041L;
/*
AQS中的int型state字段被拆为2部分,高16位表示共享读锁的持有次数(每个线程的重入次数,由HoldCounter保存),低16位表示独占写锁的重入次数
*/
static final int SHARED_SHIFT = 16; //偏移单位
static final int SHARED_UNIT = (1 << SHARED_SHIFT); //00000000 00000001 00000000 00000000 state拆为2部分,所以读锁的持有次数计算都需要这个值做比较
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; //00000000 00000000 11111111 11111111 读写锁的最大持有次数65535,2的16次方-1
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; //00000000 00000000 11111111 11111111
/** 读锁高16位无符号偏移16位,相当于计算读锁的持有持有次数 */
static int sharedCount(int c) { return c >>> SHARED_SHIFT; }
/** 返回写锁的重入次数,state2种情况:
如果拥有读锁,肯定大于65535,就用到了高16位,做&操作的话就等于0,可以用state!=0加这个返回值!=0判断拥有读锁
如果是写锁的话,肯定是小于65535,用到了低16位,做&操作就返回写锁的重入次数*/
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
/** 定义类保存读锁每个线程重入次数 */
static final class HoldCounter {
int count = 0;
// 用id,而不是用thread保存,编译垃圾滞留
final long tid = Thread.currentThread().getId();
}
/** ThreadLocal子类,持有HoldCounter*/
static final class ThreadLocalHoldCounter
extends ThreadLocal<HoldCounter> {
public HoldCounter initialValue() {
return new HoldCounter();
}
}
/** 读锁的重入次数变量,在内部类Sync构造时初始化,在读锁release的重入减少到1时remove,然后-- */
private transient ThreadLocalHoldCounter readHolds;
/** 缓存最后一个成功获取读锁的持有,javadoc解释是,下一个要release的就是最后一个成功获取的,
也是为了处理优化 */
private transient HoldCounter cachedHoldCounter;
/** 为了处理优化,保存第一个进来的线程和重入次数 */
private transient Thread firstReader = null;
private transient int firstReaderHoldCount;
Sync() {
readHolds = new ThreadLocalHoldCounter();//读锁的重入次数初始化
setState(getState()); // cas操作,加内存屏障,保证readHolds的可见性
}
/* 读写锁Acquire时候判断是否需要阻塞,公平和不公平实现处理方式不一样 */
abstract boolean readerShouldBlock();
abstract boolean writerShouldBlock();
/* AQS独占api写锁的release */
protected final boolean tryRelease(int releases) {
//判断是否当前线程
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
//写锁的重入次数判断
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread(null); //写锁重入为0时true,设置独占线程null
setState(nextc);
return free;
}
/* AQS独占api写锁的acquire */
protected final boolean tryAcquire(int acquires) {
/*
* Walkthrough:
* 1. If read count nonzero or write count nonzero
* and owner is a different thread, fail.
如果读锁或写锁不为0,且占有线程不是当前线程,false
* 2. If count would saturate, fail. (This can only
* happen if count is already nonzero.)
持有次数大于最大65535,false
* 3. Otherwise, this thread is eligible for lock if
* it is either a reentrant acquire or
* queue policy allows it. If so, update state
* and set owner.
否则,如果是重入的或者按照队列策略(应该是可以插队的情况下)容许,那就更新state值设置owner线程
*/
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c); //上面说过2种情况:1.返回写锁的重入次数;2.返回0,可用于判断是否有读锁
if (c != 0) {
//c!=0 表示锁被占用
// c!=0 and w==0表示用读锁,这样的话,读锁是阻塞写锁的返回false,挂起
// c!=0 and w!=0表示有写锁,就判断下是不是重入,不是false,挂起
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w + exclusiveCount(acquires) > MAX_COUNT) //判断下是不是达到了最大重入次数
throw new Error("Maximum lock count exceeded");
// 到这里的话,那就当前线程重入了,那就设置state值,返回true,Acquire成功
setState(c + acquires);
return true;
}
//到这里那就是c为0了,需要看看是不是需要挂起(由公平和和非公平子类实现)
//非公平直接返回false,公平的话就检查hasQueuedPredecessors检查head的next是不是非当前线程
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false; //需要挂起或cas失败,那就挂起吧
setExclusiveOwnerThread(current);
return true;
}
/*AQS共享api读锁release实现*/
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
if (firstReader == current) {
//判断缓存的重入,如果只有一次,那就直接设置缓存线程null,否则递减
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
//从缓存的读锁重入变量里面取
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count; //递减重入次数
}
for (;;) { //for循环loop设置读锁的holdCount减少
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,释放读锁对其他读线程没有什么影响
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
// 如果读锁和写锁都空闲,就可以容许其他写线程处理,
// 但是如果读多写少的场景下,非公平模式,很可能读释放了,写线程也没机会
return nextc == 0;
}
}
private IllegalMonitorStateException unmatchedUnlockException() {
return new IllegalMonitorStateException(
"attempt to unlock read lock, not locked by current thread");
}
/*AQS共享api读锁Acquire实现*/
protected final int tryAcquireShared(int unused) {
/*
* Walkthrough:
* 1. If write lock held by another thread, fail.
如果其他线程获取了写锁,false,也就是写锁阻塞了读锁
* 2. Otherwise, this thread is eligible for
* lock wrt state, so ask if it should block
* because of queue policy. If not, try
* to grant by CASing state and updating count.
* Note that step does not check for reentrant
* acquires, which is postponed to full version
* to avoid having to check hold count in
* the more typical non-reentrant case.
否则,当前线程获取了写锁,根据队列策略看是否要阻塞读锁,不阻塞那就setstate,更新读锁重入次数
* 3. If step 2 fails either because thread
* apparently not eligible or CAS fails or count
* saturated, chain to version with full retry loop.
如果第二步失败了那就fullTryAcquireShared
*/
Thread current = Thread.currentThread();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current) //有写锁并且不是当前线程,挂起
return -1;
int r = sharedCount(c); //读锁的holdCount
if (!readerShouldBlock() && //公平非公平子类决定读锁是否阻塞
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) //cas设置state,注意updae值加了65535,保证更新的值是高16位
{
if (r == 0) {
//读锁只有一个,直接缓存,不用放到readHolds里面
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
//不为0,但是缓存的是当前线程,直接累加
firstReaderHoldCount++;
} else {
//其他情况,那就只能从缓存变量取值更新了
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
//需要阻塞、读锁持有超过最大、cas失败那就for循环重试
return fullTryAcquireShared(current);
}
/** 完全Acquire判断处理cas失败或者读锁重入 */
final int fullTryAcquireShared(Thread current) {
/*
* This code is in part redundant with that in
* tryAcquireShared but is simpler overall by not
* complicating tryAcquireShared with interactions between
* retries and lazily reading hold counts.
*/
HoldCounter rh = null;
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
//到这里的话,其他线程持有写锁
return -1;
// else we hold the exclusive lock; blocking here
// would cause deadlock.
//否则当前线程持有写锁,阻塞在这里会造成死锁
} else if (readerShouldBlock()) {
//写锁空闲,并且读锁需要阻塞
// Make sure we're not acquiring read lock reentrantly
if (firstReader == current) {
//如果是当前线程的话,即使需要队列策略决定需要阻塞也不阻塞,直接后面cas操作
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId()) {
rh = readHolds.get();
if (rh.count == 0)
readHolds.remove();
}
}
//需要阻塞且count==0为非重入的话,那就阻塞
if (rh.count == 0)
return -1;
}
}
if (sharedCount(c) == MAX_COUNT) //读锁持有超过最大
throw new Error("Maximum lock count exceeded");
//下面的cas操作跟对应的处理和前面tryAcquireshard里面一样
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}
/** 写锁和tryAcquire相比少调用了writerShouldBlock.导致写锁的插队,不管你公平还是不公平了 */
final boolean tryWriteLock() {
Thread current = Thread.currentThread();
int c = getState();
if (c != 0) {
int w = exclusiveCount(c);
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
}
if (!compareAndSetState(c, c + 1))
return false;
setExclusiveOwnerThread(current);
return true;
}
/** 读锁比fullreaderShouldBlock少判断了readerShouldBlock.也是读锁的插队,不管公平还是不公平模式了 */
final boolean tryReadLock() {
Thread current = Thread.currentThread();
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return false;
int r = sharedCount(c);
if (r == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return true;
}
}
}
// 当前线程是否是独占线程
protected final boolean isHeldExclusively() {
return getExclusiveOwnerThread() == Thread.currentThread();
}
//写锁的condition
final ConditionObject newCondition() {
return new ConditionObject();
}
// 获取独占线程
final Thread getOwner() {
// Must read state before owner to ensure memory consistency
return ((exclusiveCount(getState()) == 0) ?
null :
getExclusiveOwnerThread());
}
//获取读锁持有次数
final int getReadLockCount() {
return sharedCount(getState());
}
//是否写锁持有
final boolean isWriteLocked() {
return exclusiveCount(getState()) != 0;
}
//如果当前线程为独占线程,获取下重入次数,否则0
final int getWriteHoldCount() {
return isHeldExclusively() ? exclusiveCount(getState()) : 0;
}
//获取当前线程的重入次数
final int getReadHoldCount() {
if (getReadLockCount() == 0)
return 0;
Thread current = Thread.currentThread();
if (firstReader == current)
return firstReaderHoldCount;
HoldCounter rh = cachedHoldCounter;
if (rh != null && rh.tid == current.getId())
return rh.count;
int count = readHolds.get().count;
if (count == 0) readHolds.remove();
return count;
}
/** 从stream重构实例 */
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
readHolds = new ThreadLocalHoldCounter();
setState(0); // reset to unlocked state
}
//获取state值
final int getCount() { return getState(); }
}</span>
看下公平和非公平策略:
<span style="font-size:18px;">static final class NonfairSync extends Sync {
private static final long serialVersionUID = -8159625535654395037L;
final boolean writerShouldBlock() {
return false; // 非公平的写,可以插队
}
final boolean readerShouldBlock() {
/* 就是检查队列的head的next是不是独占节点 */
return apparentlyFirstQueuedIsExclusive();
}
}
final boolean apparentlyFirstQueuedIsExclusive() {
Node h, s;
return (h = head) != null &&
(s = h.next) != null &&
!s.isShared() &&
s.thread != null;
}
//公平的就要排队
static final class FairSync extends Sync {
private static final long serialVersionUID = -2274990926593161451L;
final boolean writerShouldBlock() {
return hasQueuedPredecessors();
}
final boolean readerShouldBlock() {
return hasQueuedPredecessors();
}
}
AQS:
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}</span>
内部类中的读锁和写锁类也都是调用AQS里面的东西,然后有一些支持超时或中断的方法,其他的一些监控类也不难,都可以看懂。
要记住AQS的int型state拆为2部分:高16位为读锁持有次数(线程的重入由其他变量持有),低16位为写锁的重入次数,共享读,独占写,读锁阻塞写锁,写锁阻塞写锁和读锁,写锁可将级为读锁,读锁不能升级为写锁。最后总结下读写锁的Acquire和release判断大致流程:
写锁Acquire:
1、 获取当前线程,state值和写锁重入次数;
2、 如果state不为0,说明锁被占用,可能写锁也可能读锁,需要继续判断;
3、 在state不为0情况下,如果写锁的重入为0,说明读锁被占用,因为读锁阻塞写锁,所有返回false;
4、 在state不为0情况下,如果写锁的重入不为0,说明写锁被占用,因为可重入,所以判断是否为当前线程,不是false;
5、 在3、4判断没问题,那就是当前线程写锁重入,就判断下写锁重入后是否大于最大限制,如达到,异常;
6、 如5判断没达到最大线程,那就设置写锁重入次数,返回true,获取成功;
7、 如果2判断锁没有被持有,基于队列策略判断写是否需要阻塞(非公平时,写不需要阻塞,公平时判断head->next是否null或非当前线程),需要阻塞返回false,挂起,不需要阻塞就cas操作设置state值;
8、 如果7需要阻塞或cas设置失败,返回false,挂起;
9、 如果7不需要阻塞且cas成功,设置独占线程,返回true,Acquire成功;
写锁release:
1、 首先判断是否当前线程持有,否就异常;
2、 计算state释放后的值;
3、 判断释放后的写锁重入是否为0;
4、 如果3为true,写锁重入为0那就设置独占线程为null;
5、 最后设置AQS的state值,返回3的判断结果;
读锁Acquire:
1、 获取当前线程和state锁持有次数;
2、 线程持有的写锁可降级为读锁,判断有没有其他线程持有写锁,如有,因为写锁阻塞读锁,那就挂起当前线程;
3、 如2没有其他线程持有写锁,说明要不写锁没被占用,要不当前线程持有,那就继续,获取读锁的持有;
4、 判断3个条件:;
4、 1)读释放不需要挂起;非公平时判断是否存在head->next为读线程,公平时判断head->next是否null或非当前线程;
4、 2)读锁持有小于最大;
4、 3)cas设置读锁持有成功;
5、 如果4的判断都没有问题,继续判断读锁持有是否为0:;
5、 1)为0表示首次持有读锁,设置2个首次变量缓存首次持有读线程和首次持有读线程的重入次数,这样处理,如果只有一个读的话,以后就不用去查询缓存;
5、 2)如果读锁不为0,说明有线程持有读锁,判断当前线程是否是之前缓存的首次持有读线程,如果是,累加缓存的首次持有读线程的重入次数;
5、 3)如果上面2个都不满足,那就从缓存的持有变量取当前线程的持有,然后累加重入次数,Acquire成功;
6、 如4的条件不满足,那就for循环处理当前线程,处理的流程大致同2、3、4、5:;
6、 1)先判断是否有写锁,如有继续判断是否其他线程持有,如果其他线程持有,那就挂起;
6、 2)如果没有线程持有写锁,那就判断读是否要阻塞,如果需要阻塞,继续判断:;
6、 2.1)已经获取读锁的重入,即使需要阻塞也不管,转到6.3处理,Acquire成功;
6、 2.1)如果是其他线程的首次请求,加上上面又判断需要阻塞了,那就Acquire失败,阻塞;
6、 3)上面判断Acquire没问题,判断读的持有是否达到最大,最大那就异常,没有下面处理下一些缓存变量,同5的处理,Acquire成功;
读锁release:
1、 取当前线程;
2、 判断是否已经持有读锁了:;
1)如果是,判断重入次数,为1就直接读锁为null,否则递减重入次数;
2)如果不是,那就从缓存的持有里面取当前线程的重入,如果重入小于等于1,需要从持有缓存remove当前线程,这里有个小于等于0的判断,没搞懂什么场景出现,最后递减;
3、 for循环设置读锁的持有次数,返回持有次数跟0的比较值;
终于看完AQS部分了,人生不死,学习不止!
参考:
http://ifeve.com/juc-reentrantreadwritelock/#more-9724
http://brokendreams.iteye.com/blog/2250866